In this paper, the corrosion resistance of FeCoSiBPC amorphous alloy after pre-oxidation and non-oxidation heat treatment is investigated. The corrosion behaviors of Fe80Co3Si3B10P1C3 amorphous alloys in 1 mol/L NaCl solution were investigated by the electrochemical workstation. The pre-oxidation heat treatment can improve the corrosion resistance of FeCoSiBPC amorphous alloy through an increase in the Ecorr value from −0.736 to −0.668 V, which makes it easy to reach a passive state. The corroded morphology and products of amorphous alloys were tested by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The SEM/TEM analysis showed that, after pre-oxidation treatment, the oxide layer was divided into two layers: the inner layer was amorphous, the outer layer appeared crystalline, and the main oxide was Fe2O3. During the oxidation process, Co and P elements diffused from the inner layer to the outer layer, forming phosphorus and cobalt oxides with high corrosion resistance on the surface of the ribbon, thereby improving the corrosion resistance of the ribbon.
This research paper investigated the impact of normal annealing (NA) and magnetic field annealing (FA) on the soft magnetic properties and microstructure of Fe82Si2B13P1C3 amorphous alloy iron cores. The annealing process involved various methods of magnetic field application: transverse magnetic field annealing (TFA), longitudinal magnetic field annealing (LFA), transverse magnetic field annealing followed by longitudinal magnetic field annealing (TLFA) and longitudinal magnetic field annealing followed by transverse magnetic field annealing (LTFA). The annealed samples were subjected to testing and analysis using techniques such as differential scanning calorimetry (DSC), transmission electron microscopy (TEM), X-ray diffraction (XRD), magnetic performance testing equipment and magneto-optical Kerr microscopy. The obtained results were then compared with those of commercially produced Fe80Si9B11. Fe82Si2B13P1C3 demonstrated the lowest loss of P1.4T,2kHz = 8.1 W/kg when annealed in a transverse magnetic field at 370 °C, which was 17% lower than that of Fe80Si9B11. When influenced by the longitudinal magnetic field, the magnetization curve tended to become more rectangular, and the coercivity (B3500A/m) of Fe82Si2B13P1C3 reached 1.6 T, which was 0.05 T higher than that of Fe80Si9B11. During the 370 °C annealing process of the Fe82Si2B13P1C3 amorphous iron core, the internal stress in the strip gradually dissipated, and impurity domains such as fingerprint domains disappeared and aligned with the length direction of the strip. Consequently, wide strip domains with low resistance and easy magnetization were formed, thereby reducing the overall loss of the amorphous iron core.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.