While the majority of children with febrile seizures have an excellent prognosis, a small percentage are latter discovered to have cognitive impairment. Whether the febrile seizures produce the cognitive deficits or the febrile seizures are a marker or the result of underlying brain pathology is not clear from the clinical literature. We evaluated hippocampal and prefrontal cortex function in adult rats with a prior history of experimental febrile seizures as rat pups. All of the rat pups had MRI brain scans following the seizures. Rats subjected to experimental febrile seizures were found to have moderate deficits in working and reference memory and strategy shifting in the Morris water maze test. A possible basis for these hippocampal deficits involved abnormal firing rate and poor stability of hippocampal CA1 place cells, neurons involved in encoding and retrieval of spatial information. Additional derangements of interneuron firing in the CA1 hippocampal circuit suggested a complex network dysfunction in the rats. MRI T2 values in the hippocampus were significantly elevated in 50% of seizure-experiencing rats. Learning and memory functions of these T2-positive rats were significantly worse than those of T2-negative cohorts and of controls. We conclude that cognitive dysfunction involving the hippocampus and prefrontal cortex networks occur following experimental febrile seizures and that the MRI provides a potential biomarker for hippocampal deficits in a model of prolonged human febrile seizures.
The extracellular membrane surface contains a substantial amount of negatively charged sialic acid residues. Some of the sialic acids are located close to the pore of voltage-gated channel, substantially influencing their gating properties. However, the role of sialylation of the extracellular membrane in modulation of neuronal and network activity remains primarily unknown. The level of sialylation is controlled by neuraminidase (NEU), the key enzyme that cleaves sialic acids. Here we show that NEU treatment causes a large depolarizing shift of voltage-gated sodium channel activation/inactivation and action potential (AP) threshold without any change in the resting membrane potential of hippocampal CA3 pyramidal neurons. Cleavage of sialic acids by NEU also reduced sensitivity of sodium channel gating and AP threshold to extracellular calcium. At the network level, exogenous NEU exerted powerful anticonvulsive action both in vitro and in acute and chronic in vivo models of epilepsy. In contrast, a NEU blocker (N-acetyl-2,3-dehydro-2-deoxyneuraminic acid) dramatically reduced seizure threshold and aggravated hippocampal seizures. Thus, sialylation appears to be a powerful mechanism to control neuronal and network excitability. We propose that decreasing the amount of extracellular sialic acid residues can be a useful approach to reduce neuronal excitability and serve as a novel therapeutic approach in the treatment of seizures.
The ketogenic diet (KD) is a high-fat, low-carbohydrate, and low-protein diet that is widely used to treat epilepsy in children. Although the KD has been shown to be efficacious in the treatment of childhood epilepsy, the long-term effects of the KD on brain development are not clear. The objective of this study was to examine the long-term effects of the KD on visual-spatial memory, activity level, and emotionality in immature rats after status epilepticus (SE). Weanling rats were subjected to lithium/ pilocarpine-induced SE or saline injections and were then randomized to either the KD or regular rat diet, both fed ad libitum. One month later, rats were evaluated for visual-spatial memory in the water maze, activity level in the open field test, and emotionality with the handling test. Spontaneous recurrent seizures were measured using videotaping, and seizure susceptibility was tested with flurothyl inhalation. Brains were weighed and examined for mossy fiber sprouting and cell loss. Although rats treated with the KD were active and seemed healthy, their weight gain was substantially lower than that in rats that received regular rat diet. The KD reduced the number of spontaneous seizures but had no discernible effect on flurothyl seizure susceptibility. KDfed rats, with or without SE, had significantly impaired visualspatial learning and memory compared with rats that were fed regular diet. The KD had minimal effects on activity level and emotionality. Rats that were treated with the KD had significantly impaired brain growth. No differences in pathology scores between the KD and regular diet groups were seen after SE. Despite reducing the number of spontaneous seizures after SE, the KD resulted in severe impairment in visual-spatial memory and decreased brain growth, with no effect on mossy fiber sprouting. This study raises concerns about the long-term effects of the KD on brain development. The ketogenic diet (KD) is a high-fat, low-carbohydrate, and low-protein diet that is now widely used to treat epilepsy (1-4). Although the diet has not undergone the rigorous evaluation process required for marketing of antiepileptic drugs, there is now a considerable body of evidence indicating that the KD is efficacious in the treatment of epilepsy (1,2,5,6).Despite the use of the KD over several decades, the long-term effects of the KD on cognition are not yet known. Anecdotal reports suggest improvements in alertness, cognitive function, and behavior (2), although impairments in patients have also been reported (7). In a prospective study on the effects of the KD, Pulsifer et al. (8) found that developmental quotients in children on the diet improved after 1 y. One of the difficulties in evaluating cognitive effects of the KD in children is that the diet is rarely continued in children who do not respond with a reduction in seizure frequency (5, 9). The improvement in cognitive function therefore may represent the effects of reduced seizures, a positive cognitive effect of the diet, or a combination of these facto...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.