With continued increasing construction of both electrified facilities and buried high‐strength pipelines in China, stray current corrosion defects have become an nonignorable threat for these pipelines. A comprehensive investigation on a new failure pressure prediction model for high‐strength pipes with stray current corrosion defects was conducted in this study. The mechanism of stray current corrosion in steel pipes was firstly elaborated in brief. After that, a parameterized finite element model for stress analysis of pipes with external corrosion defects was programmed by APDL code developed by general software ANSYS. By comparing numerical results with full‐scale experimental results, both the numerical model and the failure criteria for pipe burst were proven to be reasonable. Based on the finite element model, parametric analysis was performed using a calculation matrix set by orthogonal testing method to investigate the effects of three main dimensionless factors, that is, ratio of pipe diameter to wall thickness, nondimensional corrosion defect length, and nondimensional corrosion defect depth on pipe's failure pressure. Utilizing the parametric analysis results as database, a multilayer feed‐forward artificial neural network (ANN) was developed for failure pressure prediction. By comparison with experimental burst test results and results of previous failure pressure estimation model, the ANN model results were proven to have both high accuracy and efficiency, which could be referenced in residual strength or safety assessment of high‐strength pipes with corrosion defects.
Abstract:As a typical hazard threat for buried pipelines, an active fault can induce large plastic deformation in a pipe, leading to rupture failure. The mechanical behavior of high-strength X80 pipeline subjected to strike-slip fault displacements was investigated in detail in the presented study with parametric analysis performed by the finite element model, which simulates pipe and soil constraints on pipe by shell and nonlinear spring elements respectively. Accuracy of the numerical model was validated by previous full-scale experimental results. Insight of local buckling response of high-strength pipe under compressive strike-slip fault was revealed. Effects of the pipe-fault intersection angle, pipe operation pressure, pipe wall thickness, soil parameters and pipe buried depth on critical section axial force in buckled area, critical fault displacement, critical compressive strain and post buckling response were elucidated comprehensively. In addition, feasibility of some common buckling failure criteria (i.e., the CSA Z662 model proposed by Canadian Standard association, the UOA model proposed by University of Alberta and the CRES-GB50470 model proposed by Center of Reliable Energy System) was discussed by comparing with numerical results. This study can be referenced for performance-based design and assessment of buried high-strength pipe in geo-hazard areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.