Curcumolhas been reported to possess antitumor activity. However, its effect and mechanisms against tumor metastasis are still unclear. This study is to investigate the inhibitory effect of curcumol on breast cancer cell metastasis and elucidate the underlying molecular mechanisms. Our results showed that noncytotoxicity was caused by curcumol within 10 to 40 µg/mL in MDA-MB-231 and 4T1 cells for 24 hours, whereas sustained treatment with curcumol for 14 days significantly suppressed the clonogenic activity of cells. Importantly, curcumol at noncytotoxic concentrations suppressed the migration ability of both MDA-MB-231 and 4T1 cells. Moreover, curcumol suppressed the migration and invasion of MDA-MB-231 cells in the Boyden chamber migration and invasion assay and inhibited the adhesion of MDA-MB-231 cells onto the matrigel. Further investigations revealed that curcumol decreased the enzyme activity and protein expression of matrix metalloproteinase (MMP-9) in MDA-MB-231 cells. Moreover, curcumol inhibited the activation of c-Jun N-terminal kinase (JNK) 1/2 and Akt (Ser473). Meanwhile, it also inhibited the nuclear translocation and transcriptional activity of nuclear factor κB (NF-κB). Furthermore, JNK inhibitor SP600125 and Akt (Ser473) inhibitor LY294002 enhanced the inhibition of curcumol on NF-κB p65 nuclear translocation. Finally, supplementation with SP600125, LY294002, or NF-κB inhibitor Ammonium pyrrolidinedithiocarbamate (PDTC) significantly enhanced the inhibitory effect of curcumol on MMP-9 expression and cell migration, invasion, and adhesion in MDA-MB-231 cells. Our findings provide evidence for the suppression of breast cancer cell metastasis by curcumol and suggest that the inhibition of MMP-9 via JNK1/2 and Akt (Ser473)-dependent NF-κB signaling pathways may be the underlying mechanisms.
The fruits of Ligustrum lucidum (FLL) has long been used for the treatment of osteoporosis in China, but the antiosteoporotic compounds in FLL are still poorly understood. In this study, the alkaline phosphatase (ALP) activity-guided isolation of osteogenic components from FLL was carried out by using osteoblast-like UMR-106 cells. Eight compounds, namely tyrosol (1), tyrosyl acetate (2), hydroxytyrosol (3), salidroside (4), oleoside dimethyl ester (5), oleoside-7-ethyl-11-methyl ester (6), nuzhenide (7), and G13 (8), were isolated and identified. Further study showed that compounds 3, 4, 7, and 8 increased ALP activity in UMR-106 cells. Compounds 5, 6, and 7 promoted the proliferation of UMR-106 cells. The aqueous extract of FLL-activated ERα/β-mediated gene transcription, whereas the isolated compounds were inactive. All eight isolated compounds also exhibited antioxidative activity, with compounds 1, 2, and 3 being the most potent. These results indicate that the antiosteoporotic effect of FLL is derived from different compounds together with different mechanisms such as ER-dependent or independent pathways and antioxidative effects. Salidroside (4) and nuzhenide (7) warrant further investigation as new pharmaceutical tools for the prevention and treatment of osteoporosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.