Based on the polymer encapsulation method, a compact structure and high-sensitivity temperature and pressure dual parametric sensor was developed in this paper by wrapping an optical microfiber coupler (OMC) in polydimethylsiloxane (PDMS). Benefiting from the stable chemical properties and good optical field control ability of PDMS, the sensor showed good stability and repeatability. The dependence of the sensor sensitivity on wavelength, temperature, and pressure was experimentally investigated. The results showed that the temperature and pressure sensitivity could reach −2.283 nm/°C and 3.301 nm/Mpa in the C-band range. To overcome the cross-sensitivity of sensor temperature and pressure, a sensitivity matrix was established to realize dual-parameter simultaneous demodulation. In addition, the pressure repeatability of the sensor was tested. Based on this, the sensitivity matrix was further calibrated to reduce the error and improve the accuracy of demodulation. Finally, we also designed a protective shell for the sensor to meet the requirements of practical marine applications. Compared with other existing types of optical fiber sensors, this sensor has the advantages of simple fabrication, high sensitivity, and environmental adaptability, and has great potential for application in the field of marine environmental monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.