In recent decades, the oases in the Hexi Corridor have gone through a tremendous transformation, which has caused a series of social and environmental problems. We aim to explore quantitatively the characteristics of the oasis expansion and their dynamic mechanism(s) in the Hexi Corridor, and their implications and impact on current and future policies. The spatial distribution pattern and dynamic changes experienced by the oases are examined using Landsat imagery. Their spatio-temporal changes are analyzed using the grid-transformed model and the dynamic-degree model. The model drivers are analyzed based on data from statistics yearbooks and field surveys. The total area of oases in the Hexi Corridor has expanded tremendously during the last 30 years from 10,709 km2 to 14,950 km2, almost 40% of the original value. Oasis evolution patterns of ‘unchanged’, ‘expanding’, ‘shrinking’, and ‘oscillating’ are observed at different periods in the three basins. In terms of area, almost half of the oases experienced some change, where most of the changes took place in the ecotone between oases and deserts, and the interior of oases due to the reclamation of abandoned land. Oasis expansion is mainly determined by the human instincts for survival and well-being, which are generally governed by population growth, agricultural policies and economic development. These changes reflect the need to find a balance in the relationship between ecological protection and increasing the well-being of local residents, because unreasonable or excessive development and utilization will cause damage to the local ecological environment.
Detailed urban land use information is the prerequisite and foundation for implementing urban land policies and urban land development, and is of great importance for solving urban problems, assisting scientific and rational urban planning. The existing results of urban land use mapping have shortcomings in terms of accuracy or recognition scale, and it is difficult to meet the needs of fine urban management and smart city construction. This study aims to explore approaches that mapping urban land use based on multi-source data, to meet the needs of obtaining detailed land use information and, taking Lanzhou as an example, based on the previous study, we proposed a process of urban land use classification based on multi-source data. A combination road network dataset of Gaode and OpenStreetMap (OSM) was synthetically applied to divide urban parcels, while multi-source features using Sentinel-2A images, Sentinel-1A polarization data, night light data, point of interest (POI) data and other data. Simultaneously, a set of comparative experiments were designed to evaluate the contribution and impact of different features. The results showed that: (1) the combination utilization of Gaode and OSM road network could improve the classification results effectively. Specifically, the overall accuracy and kappa coefficient are 83.75% and 0.77 separately for level I and the accuracy of each type reaches more than 70% for level II; (2) the synthetic application of multi-source features is conducive to the improvement of urban land use classification; (3) Internet data, such as point of interest (POI) information and multi-time population information, contribute the most to urban land use mapping. Compared with single-moment population information, the multi-time population distribution makes more contributions to urban land use. The framework developed herein and the results derived therefrom may assist other cities in the detailed mapping and refined management of urban land use.
The oasis, a special landscape with the integration of nature and humanity in the arid region, has undergone an enormous transformation during the past decades. To gain a better understanding of the tradeoff between economic growth and oases stability in the arid land, we took the oases in the Hexi Corridor as a case to explore the constraints of oases development and the driving factors of oases expansion. The dynamic changes and spatial distribution patterns underwent by the oases were examined using multispectral remote sensing imagery. The constraints of oasis development in arid land were investigated by the grid-transformed model, as well as the index system of driving forces was analyzed using the grey incidence model based on the data from statistics yearbooks. The oasis area in the Hexi Corridor had tremendous changes expanded 40% from 1986 to 2015, the stable oasis area was 9062 km2, while the maximum area reached 16,374 km2. The constraints for oases of topography, hydrology and heat condition are as follow: The elevation of oasis ranged from 1000 to 1800 m, peaked in 1500 m; the slope of oasis distribution was flatter than 3 degrees; the aspect of oases on slope land concentrated in northeast and north, accounting for more than 60%. The main driving forces of oasis spatial expansion in the arid region were population, water resource, economy, policies, and other factors. These results are expected to (1) improve the rationality of oasis development, and (2) promote the sustainable planning and management of oases in the arid land.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.