In this paper, we proposed a cross-shaped interconnected receiver-transmitter (RT) metasurface (MS) that was employed for a high-aperture-efficiency, high-gain, circularly polarized Fabry-Pérot (FP) antenna. The RT-MS unit cell consists of upper-layer cross-shaped patch and lower-layer squared patch that are connected by two metal-probes that cross the sandwiched middle metal-plane. The bottom patch receives electromagnetic wave, functioning as receiver, and transfers it to the top cross-shaped patch passing through the two mental probes. Through tuning the relative locations of the two probes, equal amplitude and 90 • phase difference can be obtained, thereby achieving linear to circular polarization conversion performance, indicating that the MS has the ability of tuning transmission coefficients independently. Meanwhile, the MS is designed to present high reflectivity that high-gain property is obtained when forming a FP cavity. Then, an off-center coaxial patch antenna is applied as feeder due to its stable radiation performance. To further enhance the performance of the source antenna, an AMC structure is adopted to improving the radiation gain, efficiency and radiation directivity by suppressing surface wave loss. Meanwhile, the profile was also reduced. The linearly polarized wave emitting from the feeder multi-reflected in the FP cavity formed by MS superstrate and AMC structure, and then transmit it in phase to the space, thus a high-gain and CP radiation is achieved as final. The measurements demonstrate that the proposed RT-MS-based antenna perform a maximum gain of 18.7dBic at 9.4GHz with aperture efficiency of 76.7%, and a circular polarization bandwidth within 9.2-9.7GHz, while, the antenna owns a compact size of only 2.85λ 0 ×2.85λ 0 . Thus, a novel RT-MS-based FP antenna exhibit a good radiation performance that can be a candidate in applying to communication and point-to-point links.
We propose a novel Fabry–Pérot (FP) antenna consisting of a checkered polarization-conversion metasurface (PCM), corner-cut square patch antennas, and sandwiched compounds. The proposed antenna achieves low radar-cross-section (RCS), high gain, and wideband circular polarization (CP). The corner-cut square patch antennas facilitate high reflectivity, satisfactory transmission magnitude, and the desired phase difference. An embedded metal between two rings of substrate contributes to reducing cross-polarization, improving transmission efficiency, enhancing bandwidth, and reducing RCS. Following simulations, we fabricated a prototype of the proposed antenna and tested its performance. Measurements from the simulation and prototype tests were similar within a reasonable margin of error. Compared with alternative antennas, our proposed FP antenna offers high gain, wideband CP, low cost, a low RCS, and a lower profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.