In order to understand the influence of dislocations on doping and compensation in Al-rich AlGaN, thin films were grown by metal organic chemical vapor deposition (MOCVD) on different templates on sapphire and low dislocation density single crystalline AlN. AlGaN grown on AlN exhibited the highest conductivity, carrier concentration, and mobility for any doping concentration due to low threading dislocation related compensation and reduced self-compensation. The onset of self-compensation, i.e., the “knee behavior” in conductivity, was found to depend only on the chemical potential of silicon, strongly indicating the cation vacancy complex with Si as the source of self-compensation. However, the magnitude of self-compensation was found to increase with an increase in dislocation density, and consequently, AlGaN grown on AlN substrates demonstrated higher conductivity over the entire doping range.
Optically pumped lasing from AlGaN/AlN multiple quantum wells grown on single-crystalline AlN substrates with lasing thresholds as low as 6 kW/cm2 is demonstrated via the reduction of unintentional point defects in the active region and waveguide, which reduces the non-radiative recombination by 2 orders of magnitude. A higher lasing threshold of 11 kW/cm2 is observed for AlGaN barriers, owing to the reduced localization of electrons and holes in the wells. It is shown that for electrically injected UVC laser diodes, AlGaN barriers are essential.
As an alternative to electrically injected diodes, UV light emission can be obtained via second harmonic generation (SHG). In weakly birefringent materials such as aluminum nitride (AlN), the phase matching of the driving and second harmonic waves can be achieved by the quasi-phase-matching (QPM) technique, where the polarity of the material is periodically changed commensurate with the coherence wavelength. QPM also allows the use of the highest nonlinear susceptibility, and therefore, higher conversion efficiencies are possible. In this work, the QPM SHG of UV light in AlN lateral polar structure-based waveguides is demonstrated. The peak intensity of the frequency doubled laser light was measured at 344 nm and 472 nm wavelengths, in agreement with dispersion-based theoretical predictions. These results confirm the potential of III-nitride-based lateral polar structures for quasi-phase-matched nonlinear optics and for frequency doubling media for UV light generation.
Reduction in compensation in Si-doped Al-rich AlGaN is demonstrated via chemical potential control (CPC). The chemical potentials and the resulting formation energies of carbon on the nitrogen site (CN) and cation vacancy complex with Si (VIII + nSiIII) were related to growth variables through a thermodynamic supersaturation model, which quantitatively predicted the incorporation of CN and the generation of the VIII + nSiIII complex. The compensation “knee” behavior, i.e., decreasing conductivity with increasing Si incorporation beyond a certain concentration, was successfully controlled. The maximum free carrier concentration was improved by impeding the formation of VIII + nSiIII complexes under III-richer conditions, while the impurity compensation by CN was reduced by making the growth environment N-richer. The results of Hall effect measurement and photoluminescence agreed well with quantitative theoretical predictions of the CPC model. Based on the developed model, the highest conductivity of 160 Ω−1 cm−1 with free carrier concentration of 3 × 1019 cm−3 in Al0.7Ga0.3N ever reported was achieved on single crystal AlN substrates. The demonstrated predictive power of the CPC model should greatly reduce the empirical analysis or iterative experimentation that would otherwise be necessary.
The influence of the polarization field on the emission properties of the AlGaN-based quantum structures grown on AlN substrates was investigated as a function of well width, barrier width, and barrier height. A thin AlGaN well and a thin AlN barrier design reduced the polarization field to ∼0.5 MV/cm, resulting in an ultralow laser threshold of 3 kW/cm2 in an optically pumped configuration. These experimental results were used to validate the simulation. In the next step, a structure with Al0.7Ga0.3N barriers was designed to support carrier injection with a minimal loss in optical performance. This structure showed a threshold of 7 kW/cm2 under optical pumping and an estimated threshold current of 8 kA/cm2 for the electric injection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.