Rock mass behavior is determined not only by the properties of the rock matrix but also mostly by the pre-existing cracks in the rock mass. Before the overall failure of rock, the crack initiation and propagation around the tip of pre-existing cracks (i.e., pre-crack) will occur and contribute to rock failure. In this paper, the deep granite from a gold mine is taken and made to specimens with the pre-crack of 0.3 mm thickness. Uniaxial compression tests are carried out on the pre-cracked specimens. The acoustic emission (AE) sensors and digital image correlation (DIC) system are employed to record the failure characteristics of the specimens. The extended finite element method (XFEM) with the non-local stress field calculation is used to simulate the crack initiation and propagation of pre-cracks. The crack patterns, opening and shearing displacements of the cracked surface, and the crack length development are obtained from numerical simulations. Finally, the effects of friction of crack surface on the crack pattern and crack propagation are investigated and discussed. It has been found that, for pre-cracked specimens, crack initiation and propagation will occur when the stress is much smaller than the rock compressive strength. And in the range of pre-crack angle 30-60°, the larger the pre-crack angle is, the larger the compressive strength is. The crack patterns from numerical simulations have a good agreement with those from experimented DIC results. Moreover, the order of crack propagation speed is consistent with the order of the compressive strength. The crack pattern and crack propagation are affected by the friction coefficient of the cracked surface.
Cross-modal clustering (CMC) aims to enhance the clustering performance by exploring complementary information from multiple modalities. However, the performances of existing CMC algorithms are still unsatisfactory due to the conflict of heterogeneous modalities and the high-dimensional non-linear property of individual modality. In this paper, a novel deep mutual information maximin (DMIM) method for cross-modal clustering is proposed to maximally preserve the shared information of multiple modalities while eliminating the superfluous information of individual modalities in an end-to-end manner. Specifically, a multi-modal shared encoder is firstly built to align the latent feature distributions by sharing parameters across modalities. Then, DMIM formulates the complementarity of multi-modalities representations as an mutual information maximin objective function, in which the shared information of multiple modalities and the superfluous information of individual modalities are identified by mutual information maximization and minimization respectively. To solve the DMIM objective function, we propose a variational optimization method to ensure it converge to a local optimal solution. Moreover, an auxiliary overclustering mechanism is employed to optimize the clustering structure by introducing more detailed clustering classes. Extensive experimental results demonstrate the superiority of DMIM method over the state-of-the-art cross-modal clustering methods on IAPR-TC12, ESP-Game, MIRFlickr and NUS-Wide datasets.
Progressive failure in rock bridges along pre-existing discontinuities is one of the predominant destruction modes of rock slopes. The monitoring and prediction of the impending progressive failure is of great significance to ensure the stability of the rock structures and the safety of the workers. The deformation and fracture of rocks are complex processes with energy evolution between rocks and the external environment. Regarding the whole slope as a system, an energy evolution equation of rock slope systems during progressive failure was established by an energy method of systemic stability. Then, considering the weakening effect of joints and the locking effect of rock bridges, a method for calculating the safety factor of rock slopes with a locked section was proposed. Finally, the energy evolution equation and the calculation method of safety factor are verified by a case study. The results show that when the energy dissipated in the progressive failure process of rock bridges is less than the energy accumulated by itself, the deformation energy stored in the slope system can make the locked section deform continuously until the damage occurs. The system energy equal to zero can be used as the critical criterion for the dynamic instability of the rock slope with locked section. The accumulated deformation energy in the slope system can promote the development of the cracks in the locked section, and the residual energy in the critical sliding state is finally released in the form of kinetic energy, which is the main reason for the progressive dynamic instability of rock slopes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.