Despite active research and significant progress in the last 30 years, eye detection and tracking remains challenging due to the individuality of eyes, occlusion, variability in scale, location, and light conditions. Data on eye location and details of eye movements have numerous applications and are essential in face detection, biometric identification, and particular human-computer interaction tasks. This paper reviews current progress and state of the art in video-based eye detection and tracking in order to identify promising techniques as well as issues to be further addressed. We present a detailed review of recent eye models and techniques for eye detection and tracking. We also survey methods for gaze estimation and compare them based on their geometric properties and reported accuracies. This review shows that, despite their apparent simplicity, the development of a general eye detection technique involves addressing many challenges, requires further theoretical developments, and is consequently of interest to many other domains problems in computer vision and beyond.
We introduce a new large-scale video dataset designed to assess the performance of diverse visual event recognition algorithms with a focus on continuous visual event recognition (CVER) in outdoor areas with wide coverage. Previous datasets for action recognition are unrealistic for real-world surveillance because they consist of short clips showing one action by one individual [15,8]. Datasets have been developed for movies [11] and sports [12], but, these actions and scene conditions do not apply effectively to surveillance videos. Our dataset consists of many outdoor scenes with actions occurring naturally by non-actors in continuously captured videos of the real world. The dataset includes large numbers of instances for 23 event types distributed throughout 29 hours of video. This data is accompanied by detailed annotations which include both moving object tracks and event examples, which will provide solid basis for large-scale evaluation. Additionally, we propose different types of evaluation modes for visual recognition tasks and evaluation metrics along with our preliminary experimental results. We believe that this dataset will stimulate diverse aspects of computer vision research and help us to advance the CVER tasks in the years ahead.
Abstract-This paper describes a real-time online prototype driver-fatigue monitor. It uses remotely located charge-coupled-device cameras equipped with active infrared illuminators to acquire video images of the driver. Various visual cues that typically characterize the level of alertness of a person are extracted in real time and systematically combined to infer the fatigue level of the driver. The visual cues employed characterize eyelid movement, gaze movement, head movement, and facial expression. A probabilistic model is developed to model human fatigue and to predict fatigue based on the visual cues obtained. The simultaneous use of multiple visual cues and their systematic combination yields a much more robust and accurate fatigue characterization than using a single visual cue. This system was validated under real-life fatigue conditions with human subjects of different ethnic backgrounds, genders, and ages; with/without glasses; and under different illumination conditions. It was found to be reasonably robust, reliable, and accurate in fatigue characterization.
Abstract-A system that could automatically analyze the facial actions in real time has applications in a wide range of different fields. However, developing such a system is always challenging due to the richness, ambiguity, and dynamic nature of facial actions. Although a number of research groups attempt to recognize facial action units (AUs) by improving either the facial feature extraction techniques or the AU classification techniques, these methods often recognize AUs or certain AU combinations individually and statically, ignoring the semantic relationships among AUs and the dynamics of AUs. Hence, these approaches cannot always recognize AUs reliably, robustly, and consistently. In this paper, we propose a novel approach that systematically accounts for the relationships among AUs and their temporal evolutions for AU recognition. Specifically, we use a dynamic Bayesian network (DBN) to model the relationships among different AUs. The DBN provides a coherent and unified hierarchical probabilistic framework to represent probabilistic relationships among various AUs and to account for the temporal changes in facial action development. Within our system, robust computer vision techniques are used to obtain AU measurements. Such AU measurements are then applied as evidence to the DBN for inferring various AUs. The experiments show that the integration of AU relationships and AU dynamics with AU measurements yields significant improvement of AU recognition, especially for spontaneous facial expressions and under more realistic environment including illumination variation, face pose variation, and occlusion.
T his paper describes a real-time prototype computer vision system for monitoring driver vigilance. The main components of the system consists of a remotely located video CCD camera, a specially designed hardware system for real-time image acquisition and for controlling the illuminator and the alarm system, and various computer vision algorithms for simultaneously, real-time and non-intrusively monitoring various visual bio-behaviors that typically characterize a driver's level of vigilance. The visual behaviors include eyelid movement, face orientation, and gaze movement (pupil movement). The system was tested in a simulating environment with subjects of different ethnic backgrounds, different genders, ages, with/without glasses, and under different illumination conditions, and it was found very robust, reliable and accurate. IntroductionThe ever-increasing number of traffic accidents in the US due to a diminished driver's vigilance level has become a problem of serious concern to society. Drivers with a diminished vigilance level suffer from a marked decline in their abilities of perception, recognition, and vehicle control, and therefore pose serious danger to their own life and the lives of other people. Statistics show that a leading cause for fatal or injury-causing traffic accidents is due to drivers with a diminished vigilance level. In the trucking industry, 57% fatal truck accidents are due to driver fatigue. It is the number 1 cause for heavy truck crashes. Seventy percent of American drivers report driving fatigued. With the ever-growing traffic conditions, this problem will further deteriorate. For this reason, developing systems actively monitoring a driver's level of vigilance and alerting the driver of any insecure driving conditions is essential to prevent accidents.Many efforts [1][2][3][4][5][6][7][8][9] have been reported in the literature for developing active safety systems intended for reducing the number of automobile accidents due to Real-Time Imaging 8, 357-377 (2002Imaging 8, 357-377 ( ) doi:10.1006Imaging 8, 357-377 ( /rtim.2002, available online at http://www.idealibrary.com on reduced vigilance. Among different techniques, the best detection accuracy is achieved with techniques that measure physiological conditions like brain waves, heart rate, and pulse rate [8,10] People in fatigue exhibit certain visual behaviors easily observable from changes in their facial features like the eyes, head, and face. Typical visual characteristics observable from the image of a person with reduced alertness level include slow eyelid movement [12,13], smaller degree of eye openness (or even closed), frequent nodding [14], yawning, gaze (narrowness in the line of sight), sluggish in facial expression, and sagging posture. To make use of these visual cues, another increasingly popular and non-invasive approach for monitoring fatigue is to assess a driver's vigilance level through visual observation of his/her physical conditions using a camera and state-of-the-art technologies in computer vision. ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.