Precise pedestrian positioning based on smartphone-grade sensors has been a research hotspot for several years. Due to the poor performance of the mass-market Micro-Electro-Mechanical Systems (MEMS) Magnetic, Angular Rate, and Gravity (MARG) sensors, the standalone pedestrian dead reckoning (PDR) module cannot avoid long-time heading drift, which leads to the failure of the entire positioning system. In outdoor scenes, the Global Navigation Satellite System (GNSS) is one of the most popular positioning systems, and smartphone users can use it to acquire absolute coordinates. However, the smartphone’s ultra-low-cost GNSS module is limited by some components such as the antenna, and so it is susceptible to serious interference from the multipath effect, which is a main error source of smartphone-based GNSS positioning. In this paper, we propose a multi-phase GNSS/PDR fusion framework to overcome the limitations of standalone modules. The first phase is to build a pseudorange double-difference based on smartphone and reference stations, the second phase proposes a novel multipath mitigation method based on multipath partial parameters estimation (MPPE) and a Double-Difference Code-Minus-Carrier (DDCMC) filter, and the third phase is to propose the joint stride lengths and heading estimations of the two standalone modules, to reduce the long-time drift and noise. The experimental results demonstrate that the proposed multipath error estimation can effectively suppress the double-difference multipath error exceeding 4 m, and compared to other methods, our fusion method achieves a minimum error RMSE of 1.63 m in positioning accuracy, and a minimum error RMSE of 4.71 m in long-time robustness for 20 min of continuous walking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.