Prestack depth migration is a key technology for imaging complex reservoirs in media with strong lateral velocity variations. Prestack migrations are broadly separated into ray-based and wave-equation-based methods. Because of its efficiency and flexibility, ray-based Kirchhoff migration is popular in the industry. However, it has difficulties in dealing with the multi-arrivals, caustics and shadow zones. On the other hand, waveequation-based methods produce images superior to that of the ray-based methods, but they are expensive numerically, especially methods based on two-way propagators in imaging large regions. Therefore, reverse time migration algorithms with Gaussian beams have recently been proposed to reduce the cost, as they combine the high computational efficiency of Gaussian beam migration and the high accuracy of reverse time migration. However, this method was based on the assumption that the subsurface is isotropic. As the acquired azimuth and maximum offsets increase, taking into account the influence of anisotropy on seismic migration is becoming more and more crucial. Using anisotropic ray tracing systems in terms of phase velocity, we proposed an anisotropic reverse time migration using the Gaussian beams method. We consider the influence of anisotropy on the propagation direction and calculate the amplitude of Gaussian beams with optimized correlation coefficients in dynamic ray tracing, which simplifies the calculations and improves the applicability of the proposed method. Numerical tests on anisotropic models demonstrate the efficiency and accuracy of the proposed method, which can be used to image complex structures in the presence of anisotropy in the overburden.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.