SummaryEmerging and reemerging infectious diseases have a strong negative impact on public health.However, because many of these pathogens must be handled in biosafety level, 3 or 4 containment laboratories, research and development of antivirals or vaccines against these diseases are often impeded. Alternative approaches to address this issue have been vigorously pursued, particularly the use of pseudoviruses in place of wild-type viruses. As pseudoviruses have been deprived of certain gene sequences of the virulent virus, they can be handled in biosafety level 2 laboratories. Importantly, the envelopes of these viral particles may have similar conformational structures to those of the wild-type viruses, making it feasible to conduct mechanistic investigation on viral entry and to evaluate potential neutralizing antibodies. However, a variety of challenging issues remain, including the production of a sufficient pseudovirus yield and the inability to produce an appropriate pseudotype of certain viruses. This review discusses current progress in the development of pseudoviruses and dissects the factors that contribute to low viral yields.
We experimentally explore the topological Maxwell metal bands by mapping the momentum space of condensed-matter models to the tunable parameter space of superconducting quantum circuits. An exotic band structure that is effectively described by the spin-1 Maxwell equations is imaged. Threefold degenerate points dubbed Maxwell points are observed in the Maxwell metal bands. Moreover, we engineer and observe the topological phase transition from the topological Maxwell metal to a trivial insulator, and report the first experiment to measure the Chern numbers that are higher than one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.