A salamander is an ideal animal for studying the spinal locomotor network mechanism of vertebrates from an evolutionary perspective since it represents the transition from an aquatic to a terrestrial animal. However, little is known about the spinal locomotor network of a salamander. A spinal locomotor network model is a useful tool for exploring the working mechanism of the spinal networks of salamanders. A new spinal locomotor network model for a salamander is built for a three-dimensional (3D) biomechanical model of the salamander using a novel locomotion-controlled neural network model. Based on recent experimental data on the spinal circuitry and observational results of gaits of vertebrates, we assume that different interneuron sets recruited for mediating the frequency of spinal circuits are also related to the generation of different gaits. The spinal locomotor networks of salamanders are divided into low-frequency networks for walking and high-frequency networks for swimming. Additionally, a new topological structure between the body networks and limb networks is built, which only uses the body networks to coordinate the motion of limbs. There are no direct synaptic connections among limb networks. These techniques differ from existing salamander spinal locomotor network models. A simulation is performed and analyzed to validate the properties of the new spinal locomotor networks of salamanders. The simulation results show that the new spinal locomotor networks can generate a forward walking gait, a backward walking gait, a swimming gait, and a turning gait during swimming and walking. These gaits can be switched smoothly by changing external inputs from the brainstem. These properties are consistent with those of a real salamander. However, it is still difficult for the new spinal locomotor networks to generate highly efficient turning during walking, 3D swimming, nonrhythmic movements, and so on. New experimental data are required for further validation.
Experimental data have shown that inherent bursting of the neuron plays an important role in the generation of rhythmic movements in spinal networks. Based on the mechanism that the spinal neurons of a lamprey generate this inherent bursting, this paper builds a simplified inherent bursting neuron model. A new locomotion control neural network is built that takes advantage of this neuron model and its performance is analyzed mathematically and by numerical simulation. From these analyses, it is found that the new control networks have no restriction on their topological structure for generating the oscillatory outputs. If a network is used to control the motion of bionic robots or build the model of the vertebrate spinal circuitry, its topological structure can be constructed using the unit burst generator model proposed by Grillner. The networks can also be easily switched between oscillatory and non-oscillatory output. Additionally, inactivity and saturation properties of the new networks can also be developed, which will be helpful to increase the motor flexibility and environmental adaptability of bionic robots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.