Molecular dynamics simulations were employed to study the structure of molecularly thin films of antiagglomerants adsorbed at the interface between sII methane hydrates and a liquid hydrocarbon. The liquid hydrocarbon was composed of dissolved methane and higher-molecular-weight alkane such as n-hexane, n-octane, and n-dodecane. The antiagglomerants considered were surface-active compounds with three hydrophobic tails and a complex hydrophilic head that contains both amide and tertiary ammonium cation groups. The length of the hydrophobic tails and the surface density of the compounds were changed systematically. The results were analyzed in terms of the preferential orientation of the antiagglomerants, density distributions of various molecular compounds, and other molecular-level properties. At low surface densities, the hydrophobic tails do not show preferred orientation, irrespectively of the tail length. At sufficiently high surface densities, our simulations show pronounced differences in the structure of the interfacial film depending on the molecular features and on the type of hydrocarbons present in the system. Some antiagglomerants are found to pack densely at the interface and exclude methane from the interfacial region. Under these conditions, the antiagglomerant film resembles a frozen interface. The hydrophobic tails of the antiagglomerants that show this feature has a length comparable to that of the n-dodecane in the liquid phase. It is possible that the structured interfacial layer is in part responsible for determining the performance of antiagglomerants in flow-assurance applications. The simulation results are compared against experimental data obtained with the rocking cell apparatus. It was found that the antiagglomerants for which our simulations suggest evidence of a frozen interface at sufficiently high surface densities are those that show better performance in rocking cell experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.