Rational design of high-performance stable metal–organic framework (MOF) membranes is challenging, especially for the sustainable treatment of hypersaline waters to address critical global environmental issues. Herein, a molecular-level intra-crystalline defect strategy combined with a selective layer thinning protocol is proposed to fabricate robust ultrathin missing-linker UiO-66 (ML-UiO-66) membrane to enable fast water permeation. Besides almost complete salt rejection, high and stable water flux is achieved even under long-term pervaporation operation in hash environments, which effectively addresses challenging stability issues. Then, detailed structural characterizations are employed to identify the type, chemical functionality, and density of intra-crystalline missing-linker defects. Moreover, molecular dynamics simulations shed light on the positive atomistic role of these defects, which are responsible for substantially enhancing structural hydrophilicity and enlarging pore window, consequently allowing ultra-fast water transport via a lower-energy-barrier pathway across three-dimensional sub-nanochannels during pervaporation. Unlike common unfavorable defect effects, the present positive intra-crystalline defect engineering concept at the molecular level is expected to pave a promising way toward not only rational design of next-generation MOF membranes with enhanced permeation performance, but additional water treatment applications.
Membrane-based water desalination has drawn considerable attention for its potential in addressing the increasingly limited water resources, but progress remains limited due to the inherent constraints of conventional membrane materials. In this work, by employing state-of-the-art molecular simulation techniques, we demonstrated that two-dimensional hydrocarbon polymer membranes, materials that possess intrinsic and tunable nanopores, can provide opportunities as molecular sieves for producing drinkable water from saline sources. Moreover, we identified a unique relationship between the permeation and selectivity for membranes with elliptical pores, which breaks the commonly known trade-off between the pore size and desalination performance. Specifically, increase in the area of elliptical pores with a controlled minor diameter can offer an improved water flux without compromising the ability to reject salts. Water distributions and water dynamics at atomic levels with the potential of mean force profiles for water and ions were also analyzed to understand the dependence of permeation and selectivity on the pore geometry. The outcomes of this work are instrumental to the future development of ultrathin-film reverse osmosis membranes and provide guidelines for the design of membranes with more effective and efficient pore structures.
Defects in metal–organic frameworks (MOFs) can play an important role in the development of MOFs as promising reverse osmosis (RO) membranes for water desalination. By employing molecular dynamics techniques, we explore the effects of experimentally relevant defects in UiO-66 on their desalination performance. Different defect types with varying densities and chemical compensations are studied. Our results show that defective membranes can possess substantially improved water permeability and an enhanced water intrusion rate by orders of magnitude compared to the defect-free one while still maintaining an excellent ability to reject salts. Further, the relationship between adsorption energetics and transport kinetics of water is established to shed light on the permeation behaviors of MOF membranes at an atomic scale. The outcomes of this work suggest that controlling structural defects provides opportunities toward the optimization of MOFs as RO membranes for reduced energy and cost requirements in desalination.
The topology and chemical functionality of metal–organic frameworks (MOFs) make them promising candidates for membrane gas separation; however, few meet the criteria for industrial applications, that is, selectivity of >30 for CO2/CH4 and CO2/N2. This paper reports on a dense CAU‐10‐H MOF membrane that is exceptionally CO2‐selective (ideal selectivity of 42 for CO2/N2 and 95 for CO2/CH4). The proposed membrane also achieves the highest CO2 permeability (approximately 500 Barrer) among existing pure MOF membranes with CO2/CH4 selectivity exceeding 30. State‐of‐the‐art atomistic simulations provide valuable insights into the outstanding separation performance of CAU‐10‐H at the molecular level. Adsorbent–adsorbate Coulombic interactions are identified as a crucial factor in the design of CO2‐selective MOF membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.