Evidence‐based protection of migratory birds at flyway levels requires a solid understanding of their use of ‘stopping sites’ during migration. To characterize the site use of northward‐migration great knots Calidris tenuirostris in China, we compared length of stay and fuel deposition during northward migration at areas in the south and the north of the Yellow Sea, a region critical for migrating shorebirds. Radio‐tracking showed that at the southern site great knots stayed for only short periods (2.3 ± 1.9 d, n = 40), and bird captures showed that they did not increase their mean body mass while there. In the north birds stayed for 1 month (31.0 ± 13.6 d, n = 22) and almost doubled their mean body mass. Fuel consumption models suggest that great knots departing from the northern Yellow Sea should be able to fly nonstop to the breeding grounds, whereas those from the south would require a refueling stop further north. These results indicate that the study sites in the northern and southern Yellow Sea serve different roles: the southern site acts as a temporary stopover area that enables birds with low fuel stores to make it to main staging areas further north, while the northern site serves as the critical staging site where birds refuel for the next leg of their migration. The rapid turnover rate in the southern Yellow Sea indicates that many more birds use that area than are indicated by peak counts. Differential use of the southern and northern sites indicates that both play crucial roles in the ability of great knots to migrate successfully.
The emanations of electronic and mechanical devices have raised serious privacy concerns. It proves possible for an attacker to recover the keystrokes by acoustic signal emanations. Most existing malicious applications adopt contextbased approaches, which assume that the typed texts are potentially correlated. Those approaches often incur a high cost during the context learning stage, and can be limited by randomly typed contents (e.g., passwords). Also, context correlations can increase the risk of successive false recognition. We present a context-free and geometry-based approach to recover keystrokes. Using off-the-shelf smartphones to record acoustic emanations from keystrokes, this design estimates keystrokes' physical positions based on the Time Difference of Arrival (TDoA) method. We conduct extensive experiments and the results show that more than 72.2% of keystrokes can be successfully recovered.
Quaternary climatic cycles have influenced marine organisms’ spatial distribution and population dynamics. This study aimed to elucidate the evolutionary influences of contemporary and glacial physical barriers on the population structure, demography and colonization history of the mudskipper (Periophthalmus modestus) based on a mitochondrial gene segment (ND5) from 131 individual fish sampled in the northwestern Pacific Ocean. The current Kuroshio Current and the glacial exposure of the Taiwan Strait appeared to have restricted migration among the South China Sea, coastal East China and Japan. However, genetic homogeneity (Nm>1) also suggested contemporary larval transportation by sea circulation between the East China Sea and the South China Sea or historical dispersal along the glacial exposed shoreline among China, Japan and the Ryukyu Islands. Evolutionary signals of the strengthened East Asian Summer Monsoon in the mid-Pleistocene and regional difference in intertidal primary productions were indicated by a late-Pleistocene population expansion of P. modestus with a higher effective population size in the South China Sea than in the East China Sea. Furthermore, a potential colonization origin from the South China Sea was consistently inferred by different clues, including the populations’ coalescence times, the ancestral haplotype distribution, the number of private haplotypes and species/genetic diversity.
We assessed the effects of wind conditions on stopover decisions and fuel stores of migratory shorebirds at Chongming Dongtan in the south Yellow Sea along the East Asian-Australasian Flyway. In spring and autumn, wind directions differed among altitudes and wind speed generally increased with altitude. Numbers of shorebirds were related to wind effects at low altitudes (on the ground and at 300 and 800 m above the ground), wind effects at 300 m being the best predictor of shorebird numbers. In spring, total number of shorebirds and numbers of the four most abundant shorebird species were negatively related to wind assistance at low altitudes, more birds departing when tailwinds prevailed and more arriving when headwinds prevailed. In autumn, however, total number of shorebirds and numbers of the four most abundant species were positively related to wind assistance at low altitudes, more birds departing and more arriving with tailwinds than with headwinds. When tailwinds prevailed, the number of arriving birds was higher than the number of departing birds. The fuel stores of captured shorebirds, represented by their body mass, was related to wind effects and change in wind conditions between two consecutive days in both spring and autumn, captured birds being heavier when headwinds prevailed than in tailwind conditions, and when the wind conditions became less favourable for flight between two consecutive days. Our results suggest that wind conditions affect stopover decisions and fuel stores, and thus the optimal migration and fuel deposition strategies of migratory shorebirds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.