Conventional storage conditions of erythrocytes cause storage lesions. We propose that hypoxic storage conditions, involving removal of oxygen and replacement with helium, the changes in stored erythrocytes under hypoxic condition were observed and assessed. Erythrocytes were divided into two equal parts, then stored in conventional and hypoxic conditions, separately. Blood gas analysis, hemorheology, and hemolysis were performed once a week. Energy metabolism and membrane damage were monitored by enzyme-linked immunosorbent assay. Phosphatidylserine exposure was measured by flow cytometry. P 50 was measured and the oxygen dissociation curve (ODC) plotted accordingly. Erythrocyte morphology was observed microscopically. In the 9th week of storage, the hemolysis of the hypoxia group was 0.7%; lower (p < .05) than that of the control group and still below the threshold of quality requirements. The dissolved oxygen and pO 2 were only 1/4 of that in the control group (p < .01); the adenosine triphosphate, glucose, and lactic acid levels were decreased (p < .05), while the 2,3-diphosphoglycerate levels were increased relative to that in the control group (p < .01). There were no statistically significant differences in membrane damage, deformability, and aggregation between the two groups. In addition, the ODC of the two groups was shifted to the left but this difference was not statistically different. Basically similar to the effect of completely anaerobic conditions. Erythrocytes stored under hypoxic conditions could maintain a relatively stable state with a significant decrease in hemolysis, reduction of storage lesions, and an increase in shelf-life. K E Y W O R D S erythrocyte, hemolysis, hypoxic storage, metabolomics, storage lesions
SUMMARY Objectives A novel pathogen reduction technique based on vacuum ultraviolet (VUV) irradiation was developed to reduce pathogen numbers in red blood cell (RBC) components. Background Contaminated blood components pose a great risk of infection in blood recipients. The continuous development of blood screening techniques and pathogen inactivating systems has significantly reduced this risk, but many limitations remain. Methods Escherichia coli and Bacillus cereus, and bacteriophage (BP) and Lentivirus (LV) were spiked into suspended red blood cells (sRBCs) or plasma. VUV light with maximum emission at 185 nm and an average dosage of 164 μW/cm2 was placed 5 cm above the targeted products to reduce the pathogen numbers. Results Treatment for 5 minutes was effective; 3 and 10 log reductions of E coli counts were observed in sRBCs and plasma, and 2 and 3 log reductions of B cereus counts were observed in sRBCs and plasma, respectively. The BP titre was reduced by two and five log points in sRBCs and plasma, respectively; the LV titre was reduced by at least three log points in both sRBCs and plasma. VUV‐based irradiation of RBCs does not cause significant structural and functional harmful effects. This novel strategy provides moderate photonic energy to generate oxygen radicals from H2O and O2 and to selectively decrease DNA integrity of the potential pathogens. Conclusion The VUV‐based pathogen reduction technique is a simple and fast procedure with high pathogen reduction efficacy, low toxicity and limited adverse effects on cellular blood products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.