Degeneration of the intervertebral discs, a natural progression of the aging process, is strongly implicated as a cause of low back pain. Aggrecan is the major structural proteoglycan in the extracellular matrix of the intervertebral disc. It is large, possessing numerous glycosaminoglycan chains and the ability to form aggregates in association with hyaluronan. The negatively charged glycosaminoglycan side chains in aggrecan in the nucleus pulposus of the intervertebral discs can bind electrostatically to polar water molecules, which are crucial for maintaining the well-hydrated state that enables the discs to undergo reversible deformation under compressive loading. A more in-depth understanding of the molecular basis of disc degeneration is essential to the design of therapeutic solutions to treat degenerative discs. Within this scope, we discuss the current knowledge concerning the structure and function of aggrecan in intervertebral disc degeneration. These data suggest that aggrecan plays a central role in the function and degeneration of the intervertebral disc, which may suggest potential aggrecan-based therapies for disc regeneration.
To investigate the mechanisms underlying the neuroprotective effect of L-serine, permanent focal cerebral ischemia was induced by occlusion of the middle cerebral artery while monitoring cerebral blood flow (CBF). Rats were divided into control and L-serine-treated groups after middle cerebral artery occlusion. The neurological deficit score and brain infarct volume were assessed. Nissl staining was used to quantify the cortical injury. L-serine and D-serine levels in the ischemic cortex were analyzed with high performance liquid chromatography. We found that L-serine treatment: 1) reduced the neurological deficit score, infarct volume and cortical neuron loss in a dose-dependent manner; 2) improved CBF in the cortex, and this effect was inhibited in the presence of apamin plus charybdotoxin while the alleviation of both neurological deficit score and infarct volume was blocked; and 3) increased the amount of L-serine and D-serine in the cortex, and inhibition of the conversion of L-serine into D-serine by aminooxyacetic acid did not affect the reduction of neurological deficit score and infarct volume by L-serine. In conclusion, improvement in regional CBF by L-serine may contribute to its neuroprotective effect on the ischemic brain, potentially through vasodilation which is mediated by the small- and intermediate-conductance Ca2+-activated K+ channels on the cerebral blood vessel endothelium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.