A highly efficient acceptor material for organic solar cells (OSCs)--based on perylene diimide (PDI) dimers--shows significantly reduced aggregation compared to monomeric PDI. The dimeric PDI shows a best power conversion efficiency (PCE) approximately 300 times that of the monomeric PDI when blended with a conjugate polymer (BDTTTT-C-T) and with 1,8-diiodooctane as co-solvent (5%). This shows that non-fullerene materials also hold promise for efficient OSCs.
We propose an efficient method to propagate the hierarchical quantum master equations based on a reformulation of the original formalism and the incorporation of a filtering algorithm that automatically truncates the hierarchy with a preselected tolerance. The new method is applied to calculate electron transfer dynamics in a spin-boson model and the absorption spectra of an excitonic dimmer. The proposed method significantly reduces the number of auxiliary density operators used in the hierarchical equation approach and thus provides an efficient way capable of studying real time dynamics of non-Markovian quantum dissipative systems in strong system-bath coupling and low temperature regimes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.