Myopia is prevalent worldwide, particularly in East and Southeast Asia. Recent studies have suggested that the spectral composition of ambient lighting in uences refractive development, especially in humans. We aimed to determine the effect of 650-nm single-wavelength red light on the inhibition of myopia progression in children. In this retrospective cohort study, 105 myopic children (spherical equivalent refractive error [SER], -6.75 to -1.00 dioptres (D)) aged from 4 to 14 years old were retrospectively reviewed. Subjects were treated with 650-nm, low-intensity, single-wavelength red light twice a day for 3 minutes each session, with at least a 4-hour interval between sessions. IOL Master was utilized to measure the axial length (AL) and corneal curvature. Choroidal images were assessed using enhanced depth imaging optical coherence tomography (EDI-OCT), and the luminal area (LA) and stromal area were converted to binary images by the Niblack method. At baseline, the mean SER was -3.09 ± 1.74 D and -2.87 ± 1.89 D at 9 months, and signi cant changes occurred over time (P = 0.019). The AL increased by -0.06 ± 0.19 mm for 9 months (0.21 ± 0.15 mm pretreatment; P 0.001). The subfoveal choroidal thickness (SFChT) had changed by 45.32 ± 30.88 μm at the 9-month examination (P 0.001).Repetitive exposure to 650-nm, low-intensity, single-wavelength red light effectively slowed the progression of myopia and reduced axial growth after short treatment durations. These results require further validation in a longitudinal study, as well as further research in animal models.
The primary thickening growth of Moso (Phyllostachys edulis) underground shoots largely determines the culm circumference. However, its developmental mechanisms remain largely unknown. Using an integrated anatomy, mathematics and genomics approach, we systematically studied cellular and molecular mechanisms underlying the growth of Moso underground shoots. We discovered that the growth displayed a spiral pattern and pith played an important role in promoting the primary thickening process of Moso underground shoots and driving the evolution of culms with different sizes among different bamboo species. Different with model plants, the shoot apical meristem (SAM) of Moso is composed of six layers of cells. Comparative transcriptome analysis identified a large number of genes related to the vascular tissue formation that were significantly upregulated in a thick wall variant with narrow pith cavity, mildly spiral growth, and flat and enlarged SAM, including those related to plant hormones and those involved in cell wall development. These results provide a systematic perspective on the primary thickening growth of Moso underground shoots, and support a plausible mechanism resulting in the narrow pith cavity, weak spiral growth but increased vascular bundle of the thick wall Moso.
Previous studies on the fast growth of bamboo shoots mainly focused on the entire culm. No work about the fast elongation of a single internode, which is the basic unit for the fast growth of bamboo shoots, has been reported so far according to our knowledge. In this study, we have systematically investigated the regulating mechanisms underlying the fast growth of a single bamboo internode of Bambusa multiplex (Lour.) Raeusch. ex Schult. We discovered that the growth of the internode displays a logistic pattern, and the two sections located in the bottom of the internode, one for cell division and, another for cell elongation, each with an ~1-cm length, comprise the effective zones for the internode growth. RNA-Seq analysis identified a number of genes potentially involved in regulating the fast growth of bamboo internode such as those that have positive roles in promoting cell growth or division, which were dramatically down-regulated in the internode at fast growth decreasing stage. Further analysis revealed that sugar plays an important role in promoting the fast growth of bamboo internodes through inhibition of BmSnf1. Mechanical stress is found to be involved in the triggering of the internode growth decrease through activation of the generation of reactive oxygen species by upregulating Calmodulins. These results provide systematic insight into the biological mechanisms underlying the fast growth of bamboo shoots based on the behavior of a single internode.
Moso bamboo (Phyllostachys edulis) shows remarkably rapid growth (114.5 cm/day), but the underlying biological mechanisms remain unclear. After examining more than 12,750 internodes from more than 510 culms from 17 Moso populations, we identified internode 18 as a representative internode for rapid growth. This internode includes a 2-cm cell division zone (DZ), a cell elongation zone up to 12 cm, and a secondary cell wall (SCW) thickening zone. These zones elongated 11.8 cm, produced approximately 570,000,000 cells, and deposited ∼28 mg g−1 dry weight (DW) lignin and ∼44 mg g−1 DW cellulose daily, far exceeding vegetative growth observed in other plants. We used anatomical, mathematical, physiological, and genomic data to characterize development and transcriptional networks during rapid growth in internode 18. Our results suggest that (1) gibberellin may directly trigger the rapid growth of Moso shoots, (2) decreased cytokinin and increased auxin accumulation may trigger cell DZ elongation, and (3) abscisic acid and mechanical pressure may stimulate rapid SCW thickening via MYB83L. We conclude that internode length involves a possible tradeoff mediated by mechanical pressure caused by rapid growth, possibly influenced by environmental temperature and regulated by genes related to cell division and elongation. Our results provide insight into the rapid growth of Moso bamboo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.