Hydroxyl radicals (•OH) exert a strong impact on the carbon cycle due to their nonselective and highly oxidizing nature. Reduced iron-containing clay minerals (RIC) are one of the major contributors to the formation of •OH in dark environments, but their interactions with humic acids (HA) are poorly known. Here, we investigate the mutual interactions between RIC and HA under dark and oxygenated conditions. HA decreased the oxidation rate of structural Fe(II) in RIC but significantly promoted the •OH yield. HA dissolved a fraction of Fe(II) from RIC to form an aqueous Fe(II)−HA complex. •OH were generated through both heterogeneous (through oxidation of structural Fe(II)) and homogeneous pathways (through oxidation of aqueous Fe(II)−HA species). RIC-mediated •OH production by providing H 2 O 2 to react with Fe(II)−HA and electrons to regenerate Fe(II)−HA. This highly efficient homogeneous pathway was responsible for increased •OH yield. Abundant •OH significantly decreased the molecular size, bleached chromophores, and increased the oxygen-containing functional groups of HA. These molecular changes of HA resembled photochemical transformation of HA. The mutual interaction between RIC and HA in dark and redoxfluctuating environments provides a new pathway for fast turnover of recalcitrant organic matters in clay-and HA-rich ecosystems such as tropical forest soils and tidal marsh sediments.
Previous work documented the general antibacterial mechanism of iron containing clays that involved hydroxyl radical (•OH) production from soluble Fe, and attack of cell membrane and intracellular proteins. Here we explore the role of clay structural Fe(II) in •OH production at near neutral pH and identify a lipid involved in the antibacterial process. Structural Fe(III) in nontronite NAu-2 was reduced (rNAu-2) and E. coli, a model bacterium, was exposed to rNAu-2 in oxic suspension. The antibacterial activity of rNAu-2 was dependent on pH and Fe(II) concentration, where E. coli were completely killed at pH 6, but survived at pH 7 and 8. In the presence of a •OH scavenger or in anaerobic atmosphere, E. coli survived better, suggesting that cell death may be caused by •OH generated from oxidation of structural Fe(II) in rNAu-2. In-situ imaging revealed damage of a membrane lipid, cardiolipin, in the polar region of E. coli cells, where reactive oxygen species and redox-active labile Fe were enriched. Our results advance the previous antibacterial model by demonstrating that the structural Fe(II) is the primary source of •OH, which damages cardiolipin, triggers the influx of soluble Fe into the cell, and ultimately leads to cell death.
Biological redox cycling of structural Fe in phyllosilicates is an important but poorly understood process. The objective of this research was to study microbially mediated redox cycles of Fe in nontronite (NAu-2). During the reduction phase, structural Fe(III) in NAu-2 served as electron acceptor, lactate as electron donor, AQDS as electron shuttle, and dissimilatory Fe(III)-reducing bacterium Shewanella putrefaciens CN32 as mediator in bicarbonate- and PIPES-buffered media. During the oxidation phase, biogenic Fe(II) served as electron donor and nitrate as electron acceptor. Nitrate-dependent Fe(II)-oxidizing bacterium Pseudogulbenkiania sp. strain 2002 was added as mediator in the same media. For all three cycles, structural Fe in NAu-2 was able to reversibly undergo three redox cycles without significant dissolution. Fe(II) in bioreduced samples occurred in two distinct environments, at edges and in the interior of the NAu-2 structure. Nitrate reduction to nitrogen gas was coupled with oxidation of edge-Fe(II) and part of interior-Fe(II) under both buffer conditions, and its extent and rate did not change with Fe redox cycles. These results suggest that biological redox cycling of structural Fe in phyllosilicates is a reversible process and has important implications for biogeochemical cycles of carbon, nitrogen, and other nutrients in natural environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.