Carvedilol is one of the most effective beta-blockers for preventing ventricular tachyarrhythmias (VTs) in heart failure (HF), but the mechanisms underlying its favorable anti-arrhythmic benefits remain unclear. Spontaneous Ca2+ waves, also termed store-overload-induced Ca2+ release (SOICR), are known to evoke VTs in patients with HF. Here we show that carvedilol is the only beta-blocker that effectively suppresses SOICR by directly reducing the open duration of the cardiac ryanodine receptor (RyR2). This unique anti-SOICR activity of carvedilol combined with its beta-blocking activity likely contributes to its favorable anti-arrhythmic effect. To allow individual and optimal titration of these beneficial activities, we developed a novel SOICR-inhibiting, minimally-beta-blocking carvedilol analogue VK-II-86. We found that VK-II-86 alone prevented stress-induced VTs in RyR2 mutant mice, and was more effective when combined with a selective beta-blocker metoprolol or bisoprolol. Thus, SOICR inhibition combined with optimal beta-blockade presents a new, promising and potentially patient-tailorable anti-arrhythmic approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.