This article presents a thorough investigation of a large-scale MR damper which can produce 500 kN damping force and is prepared for application in the vibration reduction of civil engineering. It is known that it is quite important to prepare a high-performance MR fluid for the large-scale MR damper. The high-performance MR fluid is developed and its essential performance characteristics are tested. Test results show that the sedimentation-proof stability, maximum yield shear stress, and response time of the MR fluid satisfy the requirements for applications of the MR damper in the vibration reduction of engineering structures. The designing process is introduced and several key techniques for the MR damper design, including built-in disk-spring accumulator, magnetic-flux leakage prevented design, leakage prevention of magnetorheological fluid, and stability enhancement of the controller for large-scale MR damper are proposed. Finally, the performance experiments of the MR damper are carried out.
Three-dimensional large eddy simulations were carried out to investigate the flow around two tandem circular cylinders at a subcritical Reynolds number of Re = 103. The cylinder center-to-center spacing ratio L/D is varied from 1.25 to 6, where D is the cylinder diameter. In order to enhance the understanding of flow physics around two circular cylinders, particular attention is devoted to fluctuating forces, shear-layer reattachment, flow separation, wake recirculation, Strouhal number (St), and phase lag (ϕ) between the fluctuating lift of the two cylinders. The flow structure around the cylinders is highly sensitive to L/D. A change in L/D thus leads to overshoot flow (L/D ≤ 1.25), reattachment flow (1.5 ≤ L/D ≤ 3.5), and coshedding flow (L/D ≥ 4). The boundaries are characterized by drastic changes in the flow structure and a discontinuous drop/rise in St and forces. The St drops at the boundary between overshoot and reattachment flow regimes and jumps at the boundary between reattachment and coshedding flow regimes, while fluctuating forces and ϕ both jump at both boundaries. The flow separation on the downstream cylinder is much delayed (122°–128°) in the reattachment flow regime compared to that on the single cylinder (95°) or upstream cylinder (92°–95.5°). The fluctuating pressure on the entire surface of either cylinder is low for the overshoot flow because the two cylinders are enclosed by the upstream-cylinder-generated shear layers having the longest wake recirculation. The ϕ is almost zero in the overshoot flow. With increasing L/D, ϕ linearly increases in the reattachment and coshedding regimes with different gradients, larger in the latter regime than in the former, by nearly twice.
This paper presents analytical and experimental investigations for fatigue lives of structures under uniaxial, torsional, multiaxial proportional, and non‐proportional loading conditions. It is known that the rotation of principal stress/strain axes and material additional hardening due to non‐proportionality of cycle loading are the 2 main causes resulting in shorter fatigue lives compared with those under proportional loading. This paper treats these 2 causes as independent factors influencing multiaxial fatigue damage and proposes a new non‐proportional influencing parameter to consider their combined effects on the fatigue lives of structures. A critical plane model for multiaxial fatigue lives prediction is also proposed by using the proposed non‐proportional influencing factor to modify the Fatemi‐Socie model. The comparison between experiment results and theoretical evaluation shows that the proposed model can effectively predict the fatigue life due to multiaxial non‐proportional loading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.