Ferroptosis is a novel iron-dependent form of cell death implicated in brain pathology. However, whether arsenite is an inducer of ferroptosis in the neuron remains completely unknown. In this study, the seven-week-old healthy C57BL/6 J male mice were treated with environmental related doses (0.5, 5 and 50 mg/L) of arsenite for 6 months via drinking water, and the ferroptosis-related indicators were further determined. Our results demonstrated for the first time that, arsenite exposure significantly reduced the number of neuron and caused the pathological changes of mitochondria in the cerebral cortex of mice. We further revealed that arsenite induced ferroptotic cell death in neuron by accumulation of reactive oxygen species and lipid peroxidation products, disruption of Fe homeostasis, depletion of glutathione and adenosine triphosphate, inhibition of cysteine/glutamate antiporter, activation of mitogen-activated protein kinases and mitochondrial voltage-dependent anion channels pathways, up-regulation of endoplasmic reticulum stress, all of which were involved in the process of ferroptosis. These findings were also verified in the cultured PC-12 cells by using ferropotosis inhibitor, desferoxamine. Taken together, our results not only reveal a novel mechanism that chronic arsenite exposure may trigger the new form of cell death, ferroptosis, but also shed a new light on a potential clue for the intervention and prevention against arsenite-related neurodegenerative diseases.
Arsenite exposure is known to increase the risk of neurological disorders via alteration of dopamine content, but the detailed molecular mechanisms remain largely unknown. In this study, using both dopaminergic neurons of the PC-12 cell line and C57BL/6J mice as in vitro and in vivo models, our results demonstrated that 6 months of arsenite exposure via drinking water caused significant learning and memory impairment, anxiety-like behavior and alterations in conditioned avoidance and escape responses in male adult mice. We also were the first to reveal that the reduction in dopamine content induced by arsenite mainly resulted from deficits in dopaminergic neurotransmission in the synaptic cleft. The reversible N6- methyladenosine (m6A) modification is a novel epigenetic marker with broad roles in fundamental biological processes. We further evaluated the effect of arsenite on the m6A modification and tested if regulation of the m6A modification by demethylase fat mass and obesity-associated (FTO) could affect dopaminergic neurotransmission. Our data demonstrated for the first time that arsenite remarkably increased m6A modification, and FTO possessed the ability to alleviate the deficits in dopaminergic neurotransmission in response to arsenite exposure. Our findings not only provide valuable insight into the molecular neurotoxic pathogenesis of arsenite exposure, but are also the first evidence that regulation of FTO may be considered as a novel strategy for the prevention of arsenite-associated neurological disorders.
Purpose Zinc oxide nanoparticles (ZnONPs) are one of the most important nanomaterials that are widely used in the food, cosmetic and medical industries. Humans are often exposed to ZnONPs via inhalation, and they may reach the brain where neurotoxic effects could occur via systemic distribution. However, the mechanisms underlying how ZnONPs produce neurotoxic effects in the brain remain unclear. In this study, we aimed to investigate the novel mechanism involved in ZnONPs-induced neurotoxicity. Methods and Results We demonstrated for the first time that pulmonary exposure to ZnONPs by intratracheal instillation could trigger ferroptosis, a new form of cell death, in the neuronal cells of mouse cerebral cortex. A similar phenomenon was also observed in cultured neuron-like PC-12 cell line. By using a specific inhibitor of ferroptosis ferrostatin-1 (Fer-1), our results showed that inhibition of ferroptosis by Fer-1 could significantly alleviate the ZnONPs-induced neuronal cell death both in vivo and in vitro. Mechanistic investigation revealed that ZnONPs selectively activated the JNK pathway and thus resulted in the ferroptotic phenotypes, JNK inhibitor SP600125 could reverse lipid peroxidation upregulation and ferroptotic cell death induced by ZnONPs in PC-12 cells. Conclusion Taken together, this study not only demonstrates that pulmonary exposure of ZnONPs can induce JNK-involved ferroptotic cell death in mouse cortex and PC-12 cells, but also provides a clue that inhibition of ferroptosis by specific agents or drugs may serve as a feasible approach for reducing the untreatable neurotoxicity induced by ZnONPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.