We aimed to explore the interaction among lncRNA MALAT1, miR‐129 and SOX2. Besides, we would investigate the effect of MALAT1 on the proliferation of glioma stem cells and glioma tumorigenesis. Differentially expressed lncRNAs in glioma cells and glioma stem cells were screened out with microarray analysis. The targeting relationship between miR‐129 and MALAT1 or SOX2 was validated by dual‐luciferase reporter assay. The expressions of MALAT1, miR‐129 and SOX2 mRNA in both glioma non‐stem cells and glioma stem cells were examined by qRT‐PCR assay. The impact of MALAT1 and miR‐129 on glioma stem cell proliferation was observed by CCK‐8 assay, EdU assay and sphere formation assay. The protein expression of SOX2 was determined by western blot. The effects of MALAT1 and miR‐129 on glioma tumour growth were further confirmed using xenograft mouse model. The mRNA expression of MALAT1 was significantly up‐regulated in glioma stem cells compared with non‐stem cells, while miR‐129 was significantly down‐regulated in glioma stem cells. MALAT1 knockdown inhibited glioma stem cell proliferation via miR‐129 enhancement. Meanwhile, miR‐129 directly targeted at SOX2 and suppressed cell viability and proliferation of glioma stem cells by suppressing SOX2 expression. The down‐regulation of MALAT1 and miR‐129 overexpression both suppressed glioma tumour growth via SOX2 expression promotion in vivo. MALAT1 enhanced glioma stem cell viability and proliferation abilities and promoted glioma tumorigenesis through suppressing miR‐129 and facilitating SOX2 expressions.
The upregulation of ELTD1 ([epidermal growth factor (EGF), latrophilin and seven transmembrane domain-containing 1] on chromosome 1) in tumor cells has been reported in several types of cancer and correlates with poor cancer prognosis. However, the role of ELTD1 in glioma progression remains unknown. In this study, we examined ELTD1 expression levels in human glioma cell lines and in sixteen human gliomas of different grades. The molecular effects of ELTD1 in glioma cells were measured using quantitative polymerase chain reaction (qRT-PCR), Western blotting, Cell proliferation assays, Matrigel migration and invasion assays and brain orthotopic xenografts. We found that high expression levels of ELTD1 were positively associated with cancer progression and poor prognosis in human glioma. Mechanistically, ELTD1 activated the JAK/STAT3/HIF-1α signaling axis and p-STAT3 bound with HIF-1α. Taken together, our data provide a plausible mechanism for ELTD1-modulated glioma progression and suggest that ELTD1 may represent a potential therapeutic target in the prevention and therapy of glioma.
BackgroundFor cases of severe traumatic brain injury, during primary operation, neurosurgeons usually face a dilemma of whether or not to remove the bone flap after mass lesion evacuation. Decompressive craniectomy, which involves expansion of fixed cranial cavity, is used to treat intra-operative brain swelling and post-operative malignant intracranial hypertension. However, due to indefinite indication, the decision to perform this procedure heavily relies on personal experiences. In addition, decompressive craniectomy is associated with various complications, and the procedure lacks strong evidence of better outcomes. In the present study, we designed a prospective, randomized, controlled trial to clarify the effect of decompressive craniectomy in severe traumatic brain injury patients with mass lesions.MethodsPRECIS is a prospective, randomized, assessor-blind, single center clinical trial. In this trial, 336 patients with traumatic mass lesions will be randomly allocated to a therapeutic decompressive craniectomy group or a prophylactic decompressive craniectomy group. In the therapeutic decompressive craniectomy group, the bone flap will be removed or replaced depending on the emergence of brain swelling. In the prophylactic decompressive craniectomy group, the bone flap will be removed after mass lesion evacuation. A stepwise management of intracranial pressure will be provided according to the Brain Trauma Foundation guidelines. Salvage decompressive craniectomy will be performed for craniotomy patients once there is evidence of imaging deterioration and post-operative malignant intracranial hypertension. Participants will be assessed at 1, 6 and 12 months after randomization. The primary endpoint is favorable outcome according to the Extended Glasgow Outcome Score (5–8) at 12 months. The secondary endpoints include quality of life measured by EQ-5D, mortality, complications, intracranial pressure and cerebral perfusion pressure control and incidence of salvage craniectomy in craniotomy patients at each investigation time point.DiscussionThis study will provide evidence to optimize primary decompressive craniectomy application and assess outcomes and risks for mass lesions in severe traumatic brain injury.Trial registrationISRCTN20139421
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.