Many cockroach species have adapted to urban environments, and some have been serious pests of public health in the tropics and subtropics. Here, we present the 3.38-Gb genome and a consensus gene set of the American cockroach, Periplaneta americana. We report insights from both genomic and functional investigations into the underlying basis of its adaptation to urban environments and developmental plasticity. In comparison with other insects, expansions of gene families in P. americana exist for most core gene families likely associated with environmental adaptation, such as chemoreception and detoxification. Multiple pathways regulating metamorphic development are well conserved, and RNAi experiments inform on key roles of 20-hydroxyecdysone, juvenile hormone, insulin, and decapentaplegic signals in regulating plasticity. Our analyses reveal a high level of sequence identity in genes between the American cockroach and two termite species, advancing it as a valuable model to study the evolutionary relationships between cockroaches and termites.
Background: Methoprene-tolerant (Met) and Germ-cell expressed belonging to the bHLH-PAS family have been identified as juvenile hormone (JH) receptors in Drosophila. Results: Physical interaction with Hsp83 facilitates nuclear import of Met and JH action. Conclusion: Hsp83 modulates JH signaling through mediating the nuclear localization of Met. Significance: Our study helps in understanding the complicated molecular mechanisms of JH signaling.
During Drosophila metamorphosis, the single-cell layer of fat body tissues gradually dissociates into individual cells. Via a fat body-specific RNAi screen in this study, we found that two matrix metalloproteinases (MMPs), Mmp1 and Mmp2, are both required for fat body cell dissociation. As revealed through a series of cellular, biochemical, molecular, and genetic experiments, Mmp1 preferentially cleaves DE-cadherin-mediated cell-cell junctions, while Mmp2 preferentially degrades basement membrane (BM) components and thus destroy cell-BM junctions, resulting in the complete dissociation of the entire fat body tissues into individual cells. Moreover, several genetic interaction experiments demonstrated that the roles of Mmp1 and Mmp2 in this developmental process are cooperative. In conclusion, Mmp1 and Mmp2 induce fat body cell dissociation during Drosophila metamorphosis in a cooperative yet distinct manner, a finding that sheds light on the general mechanisms by which MMPs regulate tissue remodeling in animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.