The measurement of rock joint surfaces is essential for the estimation of the shear strength of the rock discontinuities in rock engineering. Commonly used techniques for the acquisition of the morphology of the surfaces, such as profilometers and laser scanners, either have low accuracy or high cost. Therefore, a high-speed, low-cost, and high-accuracy method for obtaining the topography of the joint surfaces is necessary. In this paper, a smartphone structure from motion (SfM) photogrammetric solution for measuring rock joint surfaces is presented and evaluated. Image datasets of two rock joint specimens were taken under two different modes by using an iPhone 6s, a Pixel 2, and a T329t and subsequently processed through SfM-based software to obtain 3D models. The technique for measuring rock joint surfaces was evaluated using the root mean square error (RMSE) of the cloud-to-cloud distance and the mean error of the joint roughness coefficient (JRC). The results show that the RMSEs by using the iPhone 6s and Pixel 2 are both less than 0.08 mm. The mean errors of the JRC are −7.54 and −5.27% with point intervals of 0.25 and 1.0 mm, respectively. The smartphone SfM photogrammetric method has comparable accuracy to a 3D laser scanner approach for reconstructing laboratory-sized rock joint surfaces, and it has the potential to become a popular method for measuring rock joint surfaces.
Due to the high elevation and huge potential energy of high-level landslides, they are extremely destructive and have prominent kinetic-hazard effects. Studying the kinetic-hazard effects of high-level landslides is very important for landslide risk prevention and control. In this paper, we focus on the high-level landslide that occurred in Xinmo on 24 June 2017. The research is carried out based on a field geological survey, seismic signal analysis, and the discrete element method. Through ensemble empirical mode decomposition (EEMD) and Fourier transformation, it is found that the seismic signals of the Xinmo landslide are mainly located at low frequencies of 0–10 Hz, and the dominant frequency range is 2–8 Hz. In addition, the signal time-frequency analysis and numerical simulation calculation results reveal that the average movement distance of the sliding body was about 2750 m, and the average movement speed was about 22.9 m/s. The movement process can be divided into four main stages: rapid start, impact loading, fragmentation and migration, and scattered accumulation stages. We also provide corresponding suggestions for the zoning of high-level landslide geological hazards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.