In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
The zinc finger-containing transcription factors GATA4 and GATA6 are important regulators of basal and inducible gene expression in cardiac and smooth muscle cell types. Here we demonstrate a direct functional role for GATA4 and GATA6 as regulators of cardiomyocyte hypertrophic growth and gene expression. To model the increase in endogenous GATA4 and GATA6 transcriptional activity that occurs in response to hypertrophic stimulation, each factor was overexpressed in cardiomyocytes using recombinant adenovirus. Overexpression of either GATA4 or GATA6 was sufficient to induce cardiomyocyte hypertrophy characterized by enhanced sarcomeric organization, a greater than 2-fold increase in cell surface area, and a significant increase in total protein accumulation. In vivo, transgenic mice with 2.5-fold overexpression of GATA4 within the adult heart demonstrated a slowly progressing increase in heart to body weight ratio, histological features of cardiomyopathy, and activation of hypertrophy-associated genes, suggesting that GATA factors are sufficient regulators of cardiomyocyte hypertrophy in vitro and in vivo. To evaluate the requirement of GATA factors as downstream transcriptional mediators of hypertrophy, a dominant negative GATA4-engrailed repressor fusionencoding adenovirus was generated. Expression of GATA4-engrailed blocked GATA4-and GATA6-directed transcriptional responses and agonist-induced cardiomyocyte hypertrophy, demonstrating that cardiac-expressed GATA factors are necessary mediators of this process.
Abstract-Despite the advantages of reversibly altering cardiac transgene expression, the number of successful studies with inducible cardiac-specific transgene expression remains limited. The utility of the current system is hampered by the large number of lines needed before a nonleaky inducible line is isolated and by the use of a heterologous virus-based minimal promoter in the responder line. We developed an efficient, experimentally flexible system that enables us to reversibly affect both abundant and nonabundant cardiomyocyte proteins. The use of bacterial-codon-based transactivators led to aberrant splicing, whereas other more efficient transactivators, by themselves, caused disease when expressed in the heart. The redesign of the system focused on developing stable transactivator-expressing lines in which expression was driven by the mouse ␣-myosin heavy chain promoter. A minimal responder locus was derived from the same promoter, in which the GATA sites and thyroid responsive elements responsible for robust cardiac specific expression were ablated, leading to an attenuated promoter that could be inducibly controlled. In all cases, whether activated or not, expression mimicked that of the parental promoter. By use of this system, an inducible expression of an abundant contractile protein, the atrial isoform of essential myosin light chain 1, and a powerful biological effector, glycogen synthase kinase-3 (GSK-3), were obtained. Subsequently, we tested the hypothesis that GSK-3 expression could reverse a preexisting hypertrophy. Inducible expression of GSK-3 could both attenuate a hypertrophic response and partially reverse a pressure-overload-induced hypertrophy. The system appears to be robust and can be used to temporally control high levels of cardiac-specific transgene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.