Layer II of the medial entorhinal cortex (MEC) contains two principal cell types: pyramidal cells and stellate cells. Accumulating evidence suggests that these two cell types have distinct molecular profiles, physiological properties, and connectivity. The observations hint at a fundamental functional difference between the two cell populations but conclusions have been mixed. Here, we used a tTA-based transgenic mouse line to drive expression of ArchT, an optogenetic silencer, specifically in stellate cells. We were able to optogenetically identify stellate cells and characterize their firing properties in freely moving mice. The stellate cell population included cells from a range of functional cell classes. Roughly one in four of the tagged cells were grid cells, suggesting that stellate cells contribute not only to path-integration-based representation of self-location but also have other functions. The data support observations suggesting that grid cells are not the sole determinant of place cell firing.
To explore how the living environment influences the establishment of gut microbiota in different species, as well as the extent to which changes in the living environment caused by captive breeding affect wildlife’s gut microbiota and health, we used 16S rRNA gene amplicon sequencing and shotgun metagenomic sequencing to compare the gut microbiome of two species of threatened equids, the Przewalski’s Horse and the Asian wild ass, in the wild and captivity. The results revealed that different species of Equidae living in the same environment showed remarkable convergence of gut microflora. At the same time, captive populations exhibited significantly “unhealthy” microbiota, such as low Alpha diversity, high levels of potentially pathogenic bacteria and biomarkers of physical or psychological disease, and enrichment of microbial functions associated with exogenous exposure and susceptibility, implying that the artificial environment created by captivity may adversely impact the health of wildlife to some extent. Our findings demonstrate the importance of the environmental factors for the establishment of gut microbiota and host health and provide new insights into the conservation of wildlife in captivity from the perspective of the microbiome.
Aiming at the problem of multimodal transport path planning under uncertain environments, this paper establishes a multi-objective fuzzy nonlinear programming model considering mixed-time window constraints by taking cost, time, and carbon emission as optimization objectives. To solve the model, the model is de-fuzzified by the fuzzy expectation value method and fuzzy chance-constrained planning method. Combining the game theory method with the weighted sum method, a cooperative game theory-based multi-objective optimization method is proposed. Finally, the effectiveness of the algorithm is verified in a real intermodal network. The experimental results show that the proposed method can effectively improve the performance of the weighted sum method and obtain the optimal multimodal transport path that satisfies the time window requirement, and the path optimization results are better than MOPSO and NSGA-II, effectively reducing transportation costs and carbon emissions. Meanwhile, the influence of uncertainty factors on the multimodal transport route planning results is analyzed. The results show that the uncertain factors will significantly increase the transportation cost and carbon emissions and affect the choice of route and transportation mode. Considering uncertainty factors can increase the reliability of route planning results and provide a more robust and effective solution for multimodal transportation.
Local computations of CA1 neurons are shaped by two direct input streams, from CA3 and EC LIII. By specifically silencing the direct input from the entorhinal cortex, we found that single-cell temporal coding (phase precession) strictly depends on direct EC-CA1 communication, while spatial coding and network oscillations are largely unaffected by the manipulation. Conversely, transient inhibition of the EC-CA1 direct pathway actually improved the temporal coordination of CA1 ensembles (theta sequences), reducing coding heterogeneity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.