We report the coexistence of nonvolatile resistive and magnetization switching in Pt/NiO/Nb:SrTiO3 heterostructures. These structures exhibit bipolar resistive switching (RS) behavior with multilevel RS characteristics, a maximum RS ratio of 105, and stable endurance properties. Under simple application of voltage pulses, the saturation magnetization of the NiO layer increases by up to three times in the different resistance states. This electrical modulation of both the resistive and magnetization switching properties is attributed to the migration of oxygen vacancies and charge trapping and detrapping at the heterojunction interface. Our results provide a pathway towards the electrical switching of both resistance and magnetization, which is likely to be useful for RS and magnetic multifunctional device applications.
CoFe2O4 (CFO) thin films are epitaxially grown on Nb doped (001) SrTiO3 (NSTO) single-crystal substrates by pulsed laser deposition to form Pt/CFO/NSTO heterostructures. These heterostructures exhibit typical bipolar resistive switching effect with maximum switching ratio of 5 × 104, multi-level resistance states, excellent retention, and anti-fatigue properties. When the resistance states of the heterostructures are switched between low resistance state and high resistance state upon applying bias voltages, the saturation magnetization of the CFO films shows corresponding changes associated with the resistive switching. These close correlations between the resistive switching and the magnetization can be attributed to the electrons filling into and releasing from the defect energy levels introduced by oxygen vacancies in the CFO film. These results show potential application in the multi-functional magnetoelectric sensor and non-volatile multi-level resistive switching memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.