The mayfly algorithm (MA), as a newly proposed intelligent optimization algorithm, is found that easy to fall into the local optimum and slow convergence speed. To address this, an improved mayfly algorithm based on dynamic elite strategy (DESMA) is proposed in this paper. Specifically, it first determines the specific space near the best mayfly in the current population, and dynamically sets the search radius. Then generating a certain number of elite mayflies within this range. Finally, the best one among the newly generated elite mayflies is selected to replace the best mayfly in the current population when the fitness value of elite mayfly is better than that of the best mayfly. Experimental results on 28 standard benchmark test functions from CEC2013 show that our proposed algorithm outperforms its peers in terms of accuracy speed and stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.