Background-Heme oxygenase-1 (HO-1) is an inducible stress-response protein that imparts antioxidant and antiapoptotic effects. However, its pathophysiological role in cardiac remodeling and chronic heart failure (HF) is unknown. We hypothesized that induction of HO-1 in HF alleviates pathological remodeling. Methods and Results-Adult male nontransgenic and myocyte-restricted HO-1 transgenic mice underwent either sham operation or coronary ligation to induce HF. Four weeks after ligation, nontransgenic HF mice exhibited postinfarction left ventricular (LV) remodeling and dysfunction, hypertrophy, fibrosis, oxidative stress, apoptosis, and reduced capillary density, associated with a 2-fold increase in HO-1 expression in noninfarcted myocardium. Compared with nontransgenic mice, HO-1 transgenic HF mice exhibited significantly (PϽ0.05) improved postinfarction survival (94% versus 57%) and less LV dilatation (end-diastolic volume, 46Ϯ8 versus 85Ϯ32 L), mechanical dysfunction (ejection fraction, 65Ϯ9% versus 49Ϯ16%), hypertrophy (LV/tibia length 4.4Ϯ0.4 versus 5.2Ϯ0.6 mg/mm), interstitial fibrosis (11.2Ϯ3.1% versus 18.5Ϯ3.5%), and oxidative stress (3-fold reduction in tissue malondialdehyde). Moreover, myocyte-specific HO-1 overexpression in HF promoted tissue neovascularization and ameliorated myocardial p53 expression (2-fold reduction) and apoptosis. In isolated mitochondria, mitochondrial permeability transition was inhibited by HO-1 in a carbon monoxide (CO)-dependent manner and was recapitulated by the CO donor tricarbonylchloro(glycinato)ruthenium(II) (CORM-3). HO-1-derived CO also prevented H 2 O 2 -induced cardiomyocyte apoptosis and cell death. Finally, in vivo treatment with CORM-3 alleviated postinfarction LV remodeling, p53 expression, and apoptosis. Conclusions-HO-1 induction in the failing heart is an important cardioprotective adaptation that opposes pathological LV remodeling, and this effect is mediated, at least in part, by CO-dependent inhibition of mitochondrial permeability transition and apoptosis. Augmentation of HO-1 or its product, CO, may represent a novel therapeutic strategy for ameliorating HF.
A model of intracoronary stem cell delivery that enables transgenesis/gene targeting would be a powerful tool but is still lacking. To address this gap, we compared intracoronary and intramyocardial delivery of lin−/c-kit+/GFP+ cardiac stem cells (CSCs) in a murine model of reperfused myocardial infarction (MI). Lin−/c-kit+/GFP+ CSCs were successfully expanded from GFP transgenic hearts and cultured with no detectable phenotypic change for up to ten passages. Intracoronary delivery of CSCs 2 days post-MI resulted in significant alleviation of adverse LV remodeling and dysfunction, which was at least equivalent, if not superior, to that achieved with intramyocardial delivery. Compared with intramyocardial injection, intracoronary infusion was associated with a more homogeneous distribution of CSCs in the infarcted region and a greater increase in viable tissue in this region, suggesting greater formation of new cardiomyocytes. Intracoronary CSC delivery resulted in improved function in the infarcted region, as well as in improved global LV systolic and diastolic function, and in decreased LV dilation and LV expansion index; the magnitude of these effects was similar to that observed after intramyocardial injection. We conclude that, in the murine model of reperfused MI, intracoronary CSC infusion is at least as effective as intramyocardial injection in limiting LV remodeling and improving both regional and global LV function. The intracoronary route appears to be superior in terms of uniformity of cell distribution, myocyte regeneration, and amount of viable tissue in the risk region. To our knowledge, this is the first study to report that intracoronary infusion of stem cells in mice is feasible and effective.
Rationale The effects of c-kitPOS cardiac progenitor cells (CPCs) (and adult cell therapy in general) on left ventricular (LV) function have been regarded as modest or inconsistent. Objective To determine whether three CPC infusions have greater efficacy than one infusion. Methods and Results Rats with a 30-day-old myocardial infarction received one or three CPC infusions into the LV cavity, 35 days apart. Compared with vehicle-treated rats, the single-dose group exhibited improved LV function after the 1st infusion (consisting of CPCs) but not after the 2nd and 3rd (vehicle). In contrast, in the multiple-dose group regional and global LV function improved by a similar degree after each CPC infusion, resulting in greater cumulative effects. For example, the total increase in LV ejection fraction was approximately triple in the multiple-dose group vs. the single-dose group (P<0.01). The multiple-dose group also exhibited more viable tissue and less scar, less collagen in the risk and noninfarcted regions, and greater myocyte density in the risk region. Conclusions This is the first demonstration that repeated CPC administrations are markedly more effective than a single administration. The concept that the full effects of CPCs require repeated doses has significant implications for both preclinical and clinical studies; it suggests that the benefits of cell therapy may be underestimated or even overlooked if they are measured after a single dose, and that repeated administrations are necessary to properly evaluate the effectiveness of a cell product. In addition, we describe a new method that enables studies of repeated cell administrations in rodents.
We have recently demonstrated that repeated administrations of c-kitPOS cardiac progenitor cells (CPCs) have cumulative beneficial effects in rats with old myocardial infarction (MI), resulting in markedly greater improvement in left ventricular (LV) function compared with a single administration. To determine whether this paradigm applies to other species and cell types, mice with a 3-week- old MI received one or three doses of cardiac mesenchymal cells (CMCs), a novel cell type that we have recently described. CMCs or vehicle were infused percutaneously into the LV cavity, 14 days apart. Compared with vehicle-treated mice, the single-dose group exhibited improved LV ejection fraction (EF) after the 1st infusion (consisting of CMCs) but not after the 2nd and 3rd (vehicle). In contrast, in the multiple-dose group, LV EF improved after each CMC infusion, so that at the end of the study, LV EF averaged 35.5 ± 0.7% vs 32.7 ± 0.6% in the single-dose group (P < 0.05). The multiple-dose group also exhibited less collagen in the non-infarcted region vs the single-dose group. Engraftment and differentiation of CMCs were negligible in both groups, indicating paracrine effects. These results demonstrate that, in mice with ischemic cardiomyopathy, the beneficial effects of three doses of CMCs are significantly greater than those of one dose, supporting the concept that multiple treatments are necessary to properly evaluate the full therapeutic potential of cell therapy. Thus, the repeated-treatment paradigm is not limited to c-kit POS CPCs or to rats, but applies to other cell types and species. The generalizability of this concept dramatically augments its significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.