In prostate cancer, androgen receptor (AR) binding and androgen-responsive gene expression are defined by hormone-independent binding patterns of the pioneer factors FoxA1 and GATA2. Insufficient evidence of the mechanisms by which GATA2 contributes to this process precludes complete understanding of a key determinant of tissue-specific AR activity. Our observations suggest that GATA2 facilitates androgen-responsive gene expression by three distinct modes of action. By occupying novel binding sites within the AR gene locus, GATA2 positively regulates AR expression before and after androgen stimulation. Additionally, GATA2 engages AR target gene enhancers prior to hormone stimulation, producing an active and accessible chromatin environment via recruitment of the histone acetyltransferase p300. Finally, GATA2 functions in establishing and/or sustaining basal locus looping by recruiting the Mediator subunit MED1 in the absence of androgen. These mechanisms may contribute to the generally positive role of GATA2 in defining AR genome-wide binding patterns that determine androgen-responsive gene expression profiles. We also find that GATA2 and FoxA1 exhibit both independent and codependent co-occupancy of AR target gene enhancers. Identifying these determinants of AR transcriptional activity may provide a foundation for the development of future prostate cancer therapeutics that target pioneer factor function.
Most of the plant homeodomain-containing proteins play important roles in organ patterning and development, and Arabidopsis GLABRA2 (GL2), a member of the class IV homeodomain-leucine zipper (HD-ZIP) proteins, is a trichome and non-root hair cell regulator. Here we report the analysis of two cotton homeodomain-containing proteins, GaHOX1 and GaHOX2, isolated from the diploid cotton Gossypium arboreum. Both GaHOX1 and GaHOX2 belong to the class IV HD-ZIP family. When expressed under the control of the GL2 promoter, GaHOX1 rescued trichome development of an Arabidopsis glabrous mutant of gl2-2 (SALK_130213), whereas GaHOX2 did not. On the other hand, expression of GaHOX1 with a Cauliflower mosaic virus (CaMV) 35S promoter in the wild-type Arabidopsis plants suppressed the trichome development just as the GL2 ectopic expression. Expression analysis by Northern, RT-PCR and in situ hybridization indicated that GaHOX1 is predominantly expressed in cotton fiber cells at early developmental stages, consistent with its putative role in regulating cotton fiber development, while GaHOX2 is expressed in both fiber and other ovular tissues, including outer and inner integuments. Our results suggest that GaHOX1 is a functional homolog of GL2 in plant trichome development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.