Lesion-mimic mutants (LMMs) provide a valuable tool to reveal the molecular mechanisms determining programmed cell death (PCD) in plants. Despite intensive research, the mechanisms behind PCD and the formation of lesions in various LMMs still remain to be elucidated. Here, we identified a rice (Oryza sativa) LMM, early lesion leaf 1 (ell1), cloned the causal gene by map-based cloning, and verified this by complementation. ELL1 encodes a cytochrome P450 monooxygenase, and the ELL1 protein was located in the endoplasmic reticulum. The ell1 mutant exhibited decreased chlorophyll contents, serious chloroplast degradation, upregulated expression of chloroplast degradation-related genes, and attenuated photosynthetic protein activity, indicating that ELL1 is involved in chloroplast development. RNA sequencing analysis showed that genes related to oxygen binding were differentially expressed in ell1 and wild-type plants; histochemistry and paraffin sectioning results indicated that hydrogen peroxide (H 2 O 2) and callose accumulated in the ell1 leaves, and the cell structure around the lesions was severely damaged, which indicated that reactive oxygen species (ROS) accumulated and cell death occurred in the mutant. TUNEL staining and comet experiments revealed that severe DNA degradation and abnormal PCD occurred in the ell1 mutants, which implied that excessive ROS accumulation may induce DNA damage and ROS-mediated cell death in the mutant. Additionally, lesion initiation in the ell1 mutant was light dependent and temperature sensitive. Our findings revealed that ELL1 affects chloroplast development or function, and that loss of ELL1 function induces ROS accumulation and lesion formation in rice.
Moderate plant height and successful establishment of reproductive organs play pivotal roles in rice grain production. The molecular mechanism that controls the two aspects remains unclear in rice. In the present study, we characterized a rice gene, ABNORMAL FLOWER AND DWARF1 (AFD1) that determined plant height, floral development and grain yield. The afd1 mutant showed variable defects including the dwarfism, long panicle, low seed setting and reduced grain yield. In addition, abnormal floral organs were also observed in the afd1 mutant including slender and thick hulls, and hull‐like lodicules. AFD1 encoded a DUF640 domain protein and was expressed in all tested tissues and organs. Subcellular localization showed AFD1‐green fluorescent fusion protein (GFP) was localized in the nucleus. Meantime, our results suggested that AFD1 regulated the expression of cell division and expansion related genes.
This study revealed that FZP functions in grain size and sterile lemma identity, and supported the hypothesis that the lemma, rudimentary glume, and sterile lemma are homologous organs.
Summary
The palea and lemma (hull) are grass‐specific organs, and determine grain size and quality. In the study, AH2 encodes a MYB domain protein, and functions in the development of hull and grain. Mutation of AH2 produces smaller grains and alters grain quality including decreased amylose content and gel consistency, and increased protein content. Meantime, part of the hull lost the outer silicified cells, and induces a transformation of the outer rough epidermis to inner smooth epidermis cells, and the body of the palea was reduced in the ah2 mutant. We confirmed the function of AH2 by complementation, CRISPR‐Cas9, and cytological and molecular tests. Additionally, AH2, as a repressor, repress transcription of the downstream genes. Our results revealed that AH2 plays an important role in the determination of hull epidermis development, palea identity, and grain size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.