Experimental ocular hypertension induces senescence of retinal ganglion cells (RGCs) that mimics events occurring in human glaucoma. Senescence‐related chromatin remodeling leads to profound transcriptional changes including the upregulation of a subset of genes that encode multiple proteins collectively referred to as the senescence‐associated secretory phenotype (SASP). Emerging evidence suggests that the presence of these proinflammatory and matrix‐degrading molecules has deleterious effects in a variety of tissues. In the current study, we demonstrated in a transgenic mouse model that early removal of senescent cells induced upon elevated intraocular pressure (IOP) protects unaffected RGCs from senescence and apoptosis. Visual evoked potential (VEP) analysis demonstrated that remaining RGCs are functional and that the treatment protected visual functions. Finally, removal of endogenous senescent retinal cells after IOP elevation by a treatment with senolytic drug dasatinib prevented loss of retinal functions and cellular structure. Senolytic drugs may have the potential to mitigate the deleterious impact of elevated IOP on RGC survival in glaucoma and other optic neuropathies.
BackgroundNasopharyngeal carcinoma (NPC) is especially prevalent in southeast Asia and southern China, but its molecular mechanisms remain poorly characterized. DNA methylation is associated with initiation and progression of tumors, including NPC. Through a genome-wide DNA methylation screening approach, we discovered ZNF154, but its methylation status and roles in NPC have not been investigated.MethodsThe methylation status of ZNF154 in NPC was detected with Methylation specific-PCR (MSP) and Quantitative Sequenom MassARRAY. The invasion and migration capacities were examined by wound healing and transwell invasion assays. The role of ZNF154 in NPC metastasis was clarified with experimental metastasis assay in vivo. Western blotting analysis was used to investigate protein changes followed by ZNF154 over-expression. Kaplan-Meier analysis was performed to determine the association between ZNF154 methylation and prognosis in NPC.ResultsCompared to immortalized nasopharyngeal tissues and cells, ZNF154 expression was frequently downregulated in NPC tissues and cell lines due to promoter methylation. Demethylation treatment with 5-aza-2-deoxycytidine (5-Aza) restored ZNF154 expression in NPC cell lines. Ectopic overexpression of ZNF154 in NPC cells inhibited cell migration and invasion in vitro and lung nodule formation in an in vivo tumor metastasis assay. Mechanistic investigations suggested ZNF154 inhibits Wnt/β-catenin signalling pathway activation and prevents the EMT in NPC. Furthermore, Kaplan-Meier analysis showed hypermethylation of the ZNF154 promoter was associated with significantly poorer disease-free survival (P = 0.032) and distant metastasis-free survival (P = 0.040) among patients with locoregionally advanced NPC.ConclusionsTaken together, these findings define a novel role for ZNF154 as a tumor suppressor in NPC.
Aging, a universal process that affects all cells in an organism, is a major risk factor for a group of neuropathies called glaucoma, where elevated intraocular pressure is one of the known stresses affecting the tissue. Our understanding of molecular impact of aging on response to stress in retina is very limited; therefore, we developed a new mouse model to approach this question experimentally. Here we show that susceptibility to response to stress increases with age and is primed on chromatin level.We demonstrate that ocular hypertension activates a stress response that is similar to natural aging and involves activation of inflammation and senescence. We show that multiple instances of pressure elevation cause aging of young retina as measured on transcriptional and DNA methylation level and are accompanied by local histone modification changes. Our data show that repeated stress accelerates appearance of aging features in tissues and suggest chromatin modifications as the key molecular components of aging. Lastly, our work further emphasizes the importance of early diagnosis and prevention as well as age-specific management of age-related diseases, including glaucoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.