The identification method using infinitesimal theory is proposed to predict rotordynamic coefficients of annular gas seals. The transient solution combined with moving grid method was unitized to obtain the fluid reaction force at a specific position under different whirling frequencies. The infinitesimal method is then applied to obtain the rotordynamic coefficients, which agrees well with published experimental results for both labyrinth seals and eccentric smooth annular seals. Particularly, the stability parameter of the effective damping coefficient can be solved precisely. Results show that the whirling frequency has little influence on direct damping coefficient, effective damping coefficient, and cross-coupled stiffness coefficient for the labyrinth seal. And the effective damping coefficients decrease as the eccentricity ratio increases. A higher eccentricity ratio tends to destabilize the seal system, especially at a low whirling frequency. Results also show that the fluid velocity in the maximum clearance in the seal leakage path is less than that in the minimum clearance. The inertial effect dominates the flow field. Then it results in higher pressure appearing in maximum clearances. The pressure difference aggravates the eccentricity of rotor and results in static instabilities of the seal system.
This paper proposes a rotordynamic identification method using the accelerating sweep frequency excitation method (ASFE). The CFD transient solution combined with the moving grid method is utilized to obtain the transient flow field of the seal excited by the whirling rotor with an accelerating frequency. Rotordynamic coefficients at swept frequencies are obtained by analyzing the transient response force acting on the rotor. Rotordynamic coefficients of three published experimental seals including a labyrinth seal (LABY), a fully partitioned pocket damper seal (FPDS) and a honeycomb seal (HC) are identified to validate the proposed method. The results show that the predicted rotordynamic coefficients are all well agreement with the experimental data. Compared with the existing numerical models based on transient solutions, the CPU consumption of the proposed method is substantially reduced by 98% when achieving the same frequency resolution. In addition, the impact of the exciting acceleration on the identification accuracy is also illustrated.
Introducing a negative preswirl at the upstream of annular gas seals has been considered as an effective way to improve the system stability. This paper demonstrates a stability enhancement approach for a short labyrinth seal using positive preswirls. The static and dynamic characteristics of the labyrinth seal with various blade numbers (5, 10, 15), inlet preswirl ratios (-0.3,-0.15, 0, 0.15, 0.3) were studied. Results show that the inlet preswirl ratio has a dramatic effect on the circumferential location of the high-pressure spot for each seal cavity, particularly for the first cavity. The inlet preswirl ratio has opposite effects on the system stability due to the difference of high-pressure spot locations between the first cavity and the others. An increasing positive inlet preswirl could improve the system stability for the labyrinth seal with fewer blades (e.g. 5 blades). Its characteristics is mainly dominated by the first seal cavity. For the labyrinth seal with 10 blades, the system characteristics shows slight dependency on the inlet preswirl ratio. For the labyrinth seal with more blades (e.g. 15 blades), the negative inlet preswirl still increases the system stability, which agrees with the conventional conclusion. The paper provides a deeper understanding on the stability improvement of the labyrinth seal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.