The existence and uniqueness of the numerical invariant measure of the backward Euler-Maruyama method for stochastic differential equations with Markovian switching is yielded, and it is revealed that the numerical invariant measure converges to the underlying invariant measure in the Wasserstein metric. Under the polynomial growth condition of drift term the convergence rate is estimated. The global Lipschitz condition on the drift coefficients required by Bao et al., 2016 and Yuan et al., 2005 is released. Several examples and numerical experiments are given to verify our theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.