Dasatinib, as a second-generation broad-spectrum tyrosine kinase inhibitor, presents an antitumor effect by inhibiting tyrosine kinases. However, dasatinib causes serious side effects, such as gastrointestinal bleeding and liver toxicity, possibly through the activation of ROCK kinase and MLC phosphorylation. At present, there is no effective prevention and treatment method. Previous research studies have shown that YQFM (YiQiFuMai powder injection) protects the blood-brain barrier by inhibiting the ROCK/MLC signaling pathway; whether YQFM can alleviate the side effects of dasatinib is unknown. In this study, dasatinib was injected (i.p. 70 mg/kg) and YQFM (i.p. 0.336 g/kg, 0.672 g/kg, 1.342 g/kg) was given in advance for 3 days to mice, to explore the effect of YQFM on side effects induced by Dasatinib. The results confirmed that YQFM significantly decreased Evans blue leakage in the small intestine and increased intestinal blood flow, increased the expression of ZO-1, Occludin, and VE-cadherin, and reduced the contents of D-lactic acid, s-VE-cadherin, Alanine aminotransferase (ALT), and Aspartate aminotransferase (AST) in serum. Finally, YQFM inhibited the expression of ROCK-1 and phosphorylation of MLC induced by Dasatinib. These findings suggested that YQFM could improve the side effects caused by Dasatinib linked with the ROCK/MLC signaling pathway, as shown in the graphical abstract.
Background:
Ruscogenin (RUS) has anti-inflammatory and antithrombotic effects, while its potential effects on deep venous thrombosis (DVT) and pulmonary embolism (PE) remain unclear.
Objective:
We aimed to elucidate the effects of RUS on DVT and PE induced by the inferior vena cava stenosis (IVCS) model and investigate the underlying mechanism.
Methods:
Male C57/BL6 mice were used to explore whether IVCS model could be complicated with deep venous thrombosis and pulmonary embolism. Then, Effects of RUS on DVT and PE related inflammatory factors and coagulation were examined using H&E staining, ELISA, and real-time PCR. Western blot analysis was used to examine the effects of RUS on MEK/ERK/Egr-1/TF signaling pathway in PE.
Results:
IVCS model induced DVT and complied with PE 48 h after surgery. Administration of RUS (0.01, 0.1, 1 mg/kg) inhibited DVT, decreased biomarker D-Dimer, cardiac troponin I, N-Terminal probrain natriuretic peptide in plasma to ameliorate PE induced by IVCS model. Meanwhile, RUS reduced tissue factor and fibrinogen content of lung tissue, inhibited P-selectin and C-reactive protein activity in plasma, and suppressed the expressions of interleukin-6 and interleukin-1β in mice. Furthermore, RUS suppressed the phosphorylation of ERK1/2 and MEK1/2, decreasing the expressions of Egr-1 and TF in the lung.
Conclusion:
IVCS model contributed to the development of DVT and PE in mice and was associated with increased inflammation. RUS showed therapeutic effects by inhibiting inflammation as well as suppressing the activation of MEK/ERK/Egr-1/TF signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.