As one of the most abundant natural polymers in nature, polysaccharides have the potential to replace petroleum-based polymers that are difficult to degrade in paper coatings. Polysaccharide molecules have a large number of hydroxyl groups that can bind strongly with paper fibers through hydrogen bonds. Chemical modification can also effectively improve the mechanical, barrier, and hydrophobic properties of polysaccharide-based coating layers and thus can further improve the related properties of coated paper. Polysaccharides can also give paper additional functional properties by dispersing and adhering functional fillers, e.g., conductive particles, catalytic particles or antimicrobial chemicals, onto paper surface. Based on these, this paper reviews the application of natural polysaccharides, such as cellulose, hemicellulose, starch, chitosan, and sodium alginate, and their derivatives in paper coatings. This paper analyzes the improvements and influences of chemical structures and properties of polysaccharides on the mechanical, barrier, and hydrophobic properties of coated paper. This paper also summarizes the researches where polysaccharides are used as the adhesives to adhere inorganic or functional fillers onto paper surface to endow paper with great surface properties or special functions such as conductivity, catalytic, antibiotic, and fluorescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.