Ziwuling black goats are typically found in loess plateaus regions and the Ziwuling Nature Reserve. Cryptorchidism is a common disease in this inbred goat, and its pathogenesis has been linked with the expression of insulin‐like factor 3 (INSL‐3). Therefore, this study aimed to investigate anatomical alterations caused by cryptorchism and the expression and distribution of INSL‐3 in normal and cryptorchid testicular tissues. The testicular tissues of 6‐month‐old Ziwuling black goats were collected for microscopic analyses using histochemical, immunohistochemical, immunofluorescence and biometrical methods, as well as Western blotting to compare the expression and distribution of INSL‐3. A lower expression of INSL‐3 was observed in cryptorchid compared with normal testicular tissues (p < .01). Cryptorchidism caused a significant reduction in layers of spermatogenic epithelium and tubule areas in Ziwuling black goat (p < .01). The interstitial to seminiferous tubule area ratio was larger in cryptorchid than in normal group. Periodic Acid‐Schiff (PAS) staining revealed pronounced positive bands in the interstitial tissue, while positive Alcian blue (AB) staining was not clear, and AB‐PAS staining revealed a positive red band in the basement membrane of cryptorchid group. Immunofluorescence revealed a strong signal of INSL‐3 expression in Sertoli and peritubular myoid cells, and moderate signal in Leydig and spermatogenic cells in the normal group. However, in cryptorchid testicular tissues, the signal of INSL‐3 expression was strong in primary spermatocytes, occasional in Sertoli cells, limited in Leydig cells and absent in peritubular myoid cells. Furthermore, immunohistochemistry showed that INSL‐3 expression was higher in normal testes compared with cryptorchid testicular tissues (p < .05), especially in primary spermatocytes and Sertoli cells. Collectively, our results indicate that cryptorchidism is closely related to the disorder of acid glycoprotein metabolism and the reduction in release of INSL‐3 from Leydig cells. Moreover, Sertoli and peritubular myoid cells are crucial for INSL signalling and could underpin further research on the mechanism of cryptorchidism in animal.
The Ziwuling black goat is an indigenously in China, their offspring are frequently affected by congenital cryptorchidism. The extracellular matrix (ECM) contains cytokines and growth factors that regulate the development of the testis, and component changes often result in pathological changes. Cryptorchidism is closely related to structural changes in ECM. In this study, the histochemical staining, immunohistochemical, immunofluorescence and Western blot combined with semi-quantitative analysis was used to describe the distribution of the important ECM components Collagen type IV (Col IV), laminin (LN)and heparan sulfate proteoglycans (HSPG) in the normal and cryptorchid testes of Ziwuling black goats. Results showed that: The histochemical staining showed that the dysplasia of seminiferous tubules and decreased number of Sertoli cells in cryptorchidism, as well as sparse collagen fiber. Meanwhile, the distribution of reticular fibers is relatively rich. Furthermore, the PAS and AB staining in the interstitial vessels and lamina propria of seminiferous tubules is weak. The immunohistochemical and immunofluorescence revealed that Col IV, LN was strongly expressed in Leydig, Sertoli cells of normal testes and moderately positive in the spermatogonia and spermatids, but HSPG was not expressed in the spermatogonia. However, cryptorchidism, the expression of Col IV, LN and HPSG in Leydig, Sertoli cells significantly decreased, as well as the expression of Col IV and LN in capillary endothelial cells, but HSPG was moderately expressed in spermatogonia. Based on these data, the underdevelopment of spermatogenic epithelium, decreased synthesis function of collagen fibers and Leydig cells develop usually in the cryptorchidism were shown to be closely related to the abnormal metabolism of Col IV and LN. The positive expressed of HSPG in the spermatogonia of cryptorchid testes is related to the compensatory development of spermatogonia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.