With the rapid development of the Internet of Things, location-based services have emerged in many social and business fields. In obtaining the service, the user needs to transmit the query data to an untrusted location service provider for query and then obtain the required content. Most existing schemes tend to protect the user’s location privacy information while ignoring the user’s query privacy. This paper proposes a secure and effective query privacy protection scheme. The multi-user cache is used to store historical query results, reduce the number of communications between users and untrusted servers, and introduce trust computing for malicious users in neighbor caches, thereby reducing the possibility of privacy leakage. When the cache cannot meet the demand, the user’s location coordinates are converted using the Moore curve, processed using encryption technology, and sent to the location service provider to prevent malicious entities from accessing the transformed data. Finally, we simulate and evaluate the scheme on real datasets, and the experimental results demonstrate the safety and effectiveness of the scheme.
The emergence of federal learning makes up for some shortcomings of machine learning, and its distributed machine learning paradigm can effectively solve the problem of data islands, allowing users to collaboratively model without sharing data. Clients only need to train locally and upload model parameters. However, the computational power and resources of local users are frequently restricted, and ML consumes a large amount of computer resources and generates enormous communication consumption. Edge computing is characterized by low latency and low bandwidth, which makes it possible to offload complicated computing tasks from mobile devices and to execute them by the edge server. This paper is dedicated to reducing the communication cost of federation learning, improving the communication efficiency, and providing some privacy protection for it. An edge federation learning architecture with a privacy protection mechanism is proposed, which is named PPEFL. Through the cooperation of the cloud server, the edge server, and the edge device, there are two stages: the edge device and the edge server cooperate to complete the training and update of the local model, perform several lightweight local aggregations at the edge server, and upload to the cloud server and the cloud server aggregates the uploaded parameters and updates the global model until the model converges. The experimental results show that the architecture has good performance in terms of model accuracy and communication consumption and can well protect the privacy of edge federated learning.
Summary Location‐based services currently face two critical issues: an insufficient number of anonymous users and the problem of location semantic homogeneity. To prevent location homogeneity attacks, we suggest a blockchain‐based anonymization approach. This scheme introduces blockchain to store the anonymous process of the requesting user and collaborating user as evidence, establishes an incentive mechanism to promote cooperation between the two parties, and then selects users who meet the semantic threshold through the location semantic tree to construct the final anonymous set. The security analysis and simulation experiments demonstrate that the scheme suggested in this article can effectively motivate and constrain each user. The semantic security value is close to the maximum value of 1, preventing homogeneity attacks caused by location semantics and protecting users' location privacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.