In this paper, the optimization method we obtained from dual-orifice atomizers previously is used to design and optimize new dual-orifice atomizers, whereas there are some differences between the new dual-orifice atomizer and dual-orifice atomizer used in Part I. For example, the mass flow is much smaller, there is an expansion angle at pilot nozzle to regulate pilot stage spray cone angle, and there is no recess length between main nozzle and pilot nozzle. Influences of structure parameters on mass flow, spray cone angle and liquid film fusion and separation are investigated, which are consistent with the expectation. Structure parameters that meet performance requirements of dual-orifice atomizer are analyzed. In addition, a new phenomenon has been found is that liquid film oscillation appears with the increase of Δ P, which should be avoided during the design and optimization of new atomizers. Pilot liquid film oscillation will influence the development of dual-orifice liquid film. Pilot swirling groove depth and expansion angle of pilot nozzle are key parameters that influence liquid film oscillation. Conclusions in this paper can be used to guide the design and optimization of new dual-orifice atomizers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.