Rigid and flexible organic electrochemical transistor arrays are successfully implemented for monitoring cardiac action potentials. Excellent signal to noise ratios are achieved with values routinely larger than 4. These devices are promising to be used in both conventional and emerging areas.
We prepared biofunctionalized matrices for cell growth using (RADA)(3)IKVAV(RADA)(3) ((Arg-Ala-Asp-Ala)(3)-Ile-Lys-Val-Ala-Val-(Arg-Ala-Asp-Ala)(3)) and (RADA)(4)IKVAV ((Arg-Ala-Asp-Ala)(4)-Ile-Lys-Val-Ala-Val), self-assembling peptides with a laminin-derived sequence inserted between and attached terminally to the repeats of RADA, respectively. The material-cell interactions were investigated with PC12, a cell line commonly used as a model for studying neural differentiation. The behavior of PC12 and especially the neural differentiation was guided by the presence of IKVAV. Furthermore, the cell-material interactions were dependent on the culture dimensionality and the position of IKVAV in the self-assembling peptide template. In the two-dimensional (2-D) culture, matrices containing IKVAV stimulated significantly longer neurite outgrowths from PC12 cells than did (RADA)(4). More pronounced effect was observed in (RADA)(3)IKVAV(RADA)(3) than in (RADA)(4)IKVAV. In the three-dimensional (3-D) culture, neurite outgrowth was not observed in the biofunctionalized matrices. Instead, cells displayed higher proliferation rate and survived longer culture time than in the 2-D culture, with such enhancement being most significant in (RADA)(3)IKVAV(RADA)(3.) Despite the lack of differentiation phenotype, the cells grown in 3-D biofunctionalized matrices were primed for differentiation, as evident by enhanced neurite outgrowth, increased neurite networking, and up-regulated expression of differentiation markers upon their reintroduction to the 2-D culture condition on petri dish. With the ease of incorporating biofunctional epitopes, and the flexibility to support either 2-D or 3-D culture, self-assembling peptides provide versatile scaffolds to study the multiple facets of biomaterial-cell interactions.
We have tailored the properties of a self-assembling peptide (SAP) matrix to direct embryonic stem cells towards neuronal differentiation by adopting a three-dimensional (3D) culture, matching mechanical strength with that of neural tissue, and incorporating fixed laminin-derived pentapeptide signals (IKVAV). We report here that such a matrix alone can induce mouse embryonic stem (ES) cells to first develop into embryoid body (EB) and increase their propensity for subsequent neuronal differentiation. Embryoid bodies were observed by day 5 of culture in SAP matrix. βIII-tubulin as an early neuronal commitment marker was more prominently detected in cells cultured in the matrix containing IKVAV signals. Interestingly, ES-derived cells did not display distinct neuron morphology within the 3D culture; however, 55 ± 10% of those cells within IKVAV conjugated matrix and 38 ± 6% of those within base matrix displayed higher potential towards neuronal differentiation after 7 days. When retrieved and recultured on a tissue culture plate, they exhibited extended neurite outgrowths and networks in the absence of any additional neuronal differentiation growth factor. The up-regulated expression of neuronal development markers (MAP2 and MeCP2) and the down-regulation of glial marker (GFAP) support that further neuronal differentiation takes place upon reculture. The results showed that an artificial matrix composed of designer SAPs could prompt the formation of EB and provides the cues favoring neuronal differentiation of ES cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.