ObjectivesTo evaluate the efficacy and safety of radiofrequency ablation (RFA) versus hepatic resection (HR) for early hepatocellular carcinoma (HCC) meeting the Milan criteria.MethodsA meta-analysis was conducted, and PubMed, Web of Science, the Cochrane Library, CBM, CNKI and VIP databases were systematically searched through November 2012 for randomized and nonrandomized controlled trials (RCTs and NRCTs). The Cochrane Collaboration's tool and modified MINORS score were applied to assess the quality of RCTs and NRCTs, respectively. The GRADE approach was employed to evaluate the strength of evidence.ResultsThree RCTs and twenty-five NRCTs were included. Among 11,873 patients involved, 6,094 patients were treated with RFA, and 5,779 with HR. The pooled results of RCTs demonstrated no significant difference between groups for 1- and 3-year overall survival (OS), recurrence-free survival (RFS) and disease-free survival (DFS) (p>0.05). The 5-year OS (Relative Risk, RR 0.72, 95% CI 0.60 to 0.88) and RFS (RR 0.56, 95% CI 0.40 to 0.78) were lower with RFA than with HR. The 3- and 5-year recurrences with RFA were higher than with HR (RR 1.48, 95% CI 1.14 to 1.94, and RR 1.52, 95% CI 1.18 to 1.97, respectively), but 1-year recurrence and in-hospital mortality showed no significant differences between groups (p>0.05). The complication rate (RR 0.18, 95% CI 0.06 to 0.53) was lower and hospital stays (Mean difference -8.77, 95% CI −10.36 to −7.18) were shorter with RFA than with HR. The pooled results of NRCTs showed that the RFA group had lower 1-, 3- and 5-year OS, RFS and DFS, and higher recurrence than the HR group (p<0.05). But for patients with very early stage HCC, RFA was comparable to HR for OS and recurrence.ConclusionThe effectiveness of RFA is comparable to HR, with fewer complications but higher recurrence, especially for very early HCC patients.
BackgroundThis study was performed to determine the effects of human placenta mesenchymal stem cell (hPMSC) transplantation on granulosa cell apoptosis and anti-Müllerian hormone (AMH) and follicle-stimulating hormone receptor (FSHR) expression in autoimmune drug-induced premature ovarian failure (POF) mice. The aim of this research is to investigate the mechanisms of hPMSCs on ovarian reserve capacity.MethodsThe POF mice model was established by injection of zona pellucida 3 peptide (pZP3). hPMSC transplantation was conducted by intravenous injection into mice following pZP3 treatment. The follicle number was examined by histopathology. The serum levels of FSH, LH, E2, AMH and anti-zona pellucida antibody (AzpAb) were measured by enzyme-linked immunosorbent assay. AMH and FSHR expression in the ovary was analyzed by immunohistochemistry and western blot analysis. Granulosa cell apoptosis of the ovaries was examined by In Situ Cell Death Detection Kit. Granulosa cells were isolated and treated with SiAmh interference and hPMSC supernatant to observe the effects of AMH expression on granulosa cell apoptosis in vitro.ResultsThe results showed that hPMSC transplantation can significantly recover the estrus cycle in the POF group. Morphological staining showed that the basal follicles and sinus follicles after hPMSC transplantation were higher in POF mice than in those without treatment, and the follicle number was significantly decreased with atresia. The serum levels of FSH, LH and AzpAb in the hPMSC transplantation group were reduced considerably, but the E2 and AMH levels were significantly increased. After hPMSC transplantation, the AMH and FSHR expression in ovarian tissue was significantly higher than in the POF group as determined by immunochemistry and western blot analysis. The FSHR expression was shown in granulosa cells only, and FSHR expression increases with AMH expressed in the ovary; granulosa cell apoptosis was decreased following hPMSC transplantation. The same results were observed from the in-vitro study.ConclusionshPMSC transplantation can significantly improve the serum levels of high gonadotropin and low estrogen of POF mice, promote follicular development, inhibit excessive follicular atresia and granulosa cell apoptosis, and improve the ovarian reserve capacity. The mechanism may be achieved by increasing the expression of AMH and FSHR in ovaries.Electronic supplementary materialThe online version of this article (doi:10.1186/s13287-017-0745-5) contains supplementary material, which is available to authorized users.
Regulatory T (Treg) cells play a key role in the regulation of autoimmunity and transplantation. Human placenta-derived mesenchymal stem cell (hPMSC) transplantation has a potential to restore ovarian dysfunction associated with premature ovarian failure (POF), while the exact function of the Treg cells in the transplantation still needs to be further investigated. In this study, hPMSCs were intravenously injected into POF mice following zona pellucida glycoprotein 3 (pZP3) treatment. Ovarian function was measured by analyzing estrous cycle, folliculogenesis, and hormone secretion, also, with the detection of apoptotic granular cells (GCs) in ovarian tissues. To determine whether immune response is involved in the regulation of ovarian function change, the population of Treg cell populations and expression of associated cytokines, for example, transforming growth factor β (TGF-β) and interferon γ (IFN-γ) were measured. After hPMSCs transplantation, the injured ovarian function is significantly improved. Also, the pZP3-treatment-induced apoptotic GCs were significantly decreased as compared with the POF mice. The transplantation of hPMSCs significantly increased the population of Treg cells which was inhibited by pZP3 treatment. The decrease in TGF-β and increase in IFN-γ in serum caused by pZP3 treatment have been reversed following hPMSCs transplantation. These findings strongly suggest that the recovery of ovarian function in POF mice is mediated via the regulation of Treg cells and production of associated cytokines following hPMSCs transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.