A novel variant of NSN P systems, called numerical spiking neural P systems with a variable consumption strategy (NSNVC P systems), is proposed. Like the spiking rules consuming spikes in spiking neural P systems, NSNVC P systems introduce a variable consumption strategy by modifying the form of the production functions used in NSN P systems. Similar to the delay feature of the spiking rules, NSNVC P systems introduce a postponement feature into the production functions. The execution of the production functions in NSNVC P systems is controlled by two, i.e., polarization and threshold, conditions. Multiple synaptic channels are used to transmit the charges and the production values in NSNVC P systems. The proposed NSNVC P systems are a type of distributed parallel computing models with a directed graphical structure. The Turing universality of the proposed NSNVC P systems is proved as number generating/accepting devices. Detailed descriptions are provided for NSNVC P systems as number generating/accepting devices. In addition, a universal NSNVC P system with 66 neurons is constructed as a function computing device.
Weighted spiking neural P systems with anti-spikes (AWSN P systems) are proposed by adding anti-spikes to spiking neural P systems with weighted synapses. Anti-spikes behave like spikes of inhibition of communication between neurons. Both spikes and anti-spikes are used in the rule expressions. An illustrative example is given to show the working process of the proposed AWSN P systems. The Turing universality of the proposed P systems as number generating and accepting devices is proved. Finally, a universal AWSN P system having 34 neurons is proved to work as a function computing device by using standard rules, and one having 30 neurons is proved to work as a number generator.
As third-generation neural network models, spiking neural P systems (SNP) have distributed parallel computing capabilities with good performance. In recent years, artificial neural networks have received widespread attention due to their powerful information processing capabilities, which is an effective combination of a class of biological neural networks and mathematical models. However, SNP systems have some shortcomings in numerical calculations. In order to improve the incompletion of current SNP systems in dealing with certain real data technology in this paper, we use neural network structure and data processing methods for reference. Combining them with membrane computing, spiking neural membrane computing models (SNMC models) are proposed. In SNMC models, the state of each neuron is a real number, and the neuron contains the input unit and the threshold unit. Additionally, there is a new style of rules for neurons with time delay. The way of consuming spikes is controlled by a nonlinear production function, and the produced spike is determined based on a comparison between the value calculated by the production function and the critical value. In addition, the Turing universality of the SNMC model as a number generator and acceptor is proved.
Due to the inevitable delay phenomenon in the process of signal conversion and transmission, time delay is bound to occur between neurons. Therefore, it is necessary to introduce the concept of time delay into the membrane computing models. Spiking neural P systems (SN P systems), as an attractive type of neural-like P systems in membrane computing, are widely followed. Inspired by the phenomenon of time delay, in our work, a new variant of spiking neural P systems called delayed spiking neural P systems (DSN P systems) is proposed. Compared with normal spiking neural P systems, the proposed systems achieve time control by setting the schedule on spiking rules and forgetting rules, and the schedule is also used to realize the system delay. A schedule indicates the time difference between receiving and outputting spikes, and it also makes the system work in a certain time, which means that a rule can only be used within a specified time range. We specify that each rule is performed only in the continuous schedule, during which the neuron is locked and cannot send or receive spikes. If the neuron is not available at a given time, it will not receive or send spikes due to the lack of a schedule for this period of time. Moreover, the universality of DSN P systems in both generating and accepting modes is proved. And a universal DSN P system having 81 neurons for computing functions is also proved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.