Pentatricopeptide repeat (PPR) proteins, characterized by tandem arrays of a 35 amino acid motif, have been suggested to play central and broad roles in modulating the expression of organelle genes in plants. However, the molecular mechanisms of most rice PPR genes remains unclear. In this paper, we isolated and characterized a temperature-conditional virescent mutant, OsV4, in rice (Oryza sativa cultivar Jiahua1 (WT, japonica rice variety)). The mutant displays albino phenotype and abnormal chloroplasts at the three leaf stage, which gradually turns green after the four leaf stage at a low temperature (20 °C). But the mutant always develops green leaves and well-developed chloroplasts at a high temperature (32 °C). Genetic and molecular analyses uncovered that OsV4 encodes a novel chloroplast-targeted PPR protein including four PPR motifs. Further investigations show that the mutant phenotype is associated with changes in chlorophyll content and chloroplast development. The OsV4 transcripts only accumulate to high levels in young leaves, indicating that its expression is tissue-specific. In addition, transcript levels of some ribosomal components and plastid-encoded polymerase-dependent genes are dramatically reduced in the albino mutants grown at 20 °C. These findings suggest that OsV4 plays an important role during early chloroplast development under cold stress in rice.
A Leslie-Gower predator-prey model incorporating harvesting is studied. By constructing a suitable Lyapunov function, we show that the unique positive equilibrium of the system is globally stable, which means that suitable harvesting has no influence on the persistent property of the harvesting system. After that, detailed analysis about the influence of harvesting is carried out, and an interesting finding is that under some suitable restriction, harvesting has no influence on the final density of the prey species, while the density of predator species is strictly decreasing function of the harvesting efforts. For the practical significance, the economic profit is considered, sufficient conditions for the presence of bionomic equilibrium are given, and the optimal harvesting policy is obtained by using thePontryagin'smaximal principle. At last, an example is given to show that the optimal harvesting policy is realizable.
Seoul virus (SEOV), which causes hemorrhagic fever with renal syndrome (HFRS) in humans, has spread all over the world, especially in mainland China. Understanding basic mechanisms of SEOV evolution is essential to better combat and prevent viral diseases. Here, we examined SEOV prevalence and evolution in the residential area of four districts in Guangzhou city, China. The carriage of SEOV was observed in 33.33% of the sampled rodents, with 35.96% of the sampled Rattus norvegicus and 13.33% of R. tanezumi. Based on the comprehensive analyses of large (L), medium (M), and small (S) segments, our study first demonstrated that the genetic characterization of urban SEOV was shaped by high nucleotide substitution rates, purifying selection, and recombination. Additionally, we detected mutational saturation in the S segment of SEOV, which may lead to the biases of genetic divergence and substitution rates in our study. Importantly, we have filled the gap of SEOV evolution in the urban area. The genetic variation of SEOV may highlight the risk of HFRS, which merits further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.