In mouse models of MPE, IFN-γ inhibited Th17-cell differentiation, whereas IL-17 inhibited Th1-cell differentiation. IL-17 inhibited the formation of MPE and improved the survival of mice bearing MPE; in contrast, IFN-γ promoted MPE formation and mouse death.
An infectious bronchitis virus (IBV), ck/CH/LZJ/111113, was isolated from a H120-vaccinated chicken which showed disease suspected of IBV infection. Neutralization testing showed that ck/CH/LZJ/111113 was distinct from either the Chinese predominant IBV LX4-type or Mass-type vaccine strains. Phylogenetic analysis confirmed that ck/CH/LZJ/111113 is of the 4/91 type; however, further extensive analyses of full-length genomes identified occurrence of recombination events. Therefore, ck/CH/LZJ/111113 originated from the recombination events between ck/CH/LDL/091022- and 4/91-like strains at three switch sites located upstream of the spike (S) glycoprotein gene, and the 3' ends of S1 and nuceocapsid (N) genes, respectively. The difference of serotypes and tissue tropisms in kidneys between ck/CH/LZJ/111113 and ck/CH/LDL/091022 may have been contributed by the uptake of the S1 gene by a ck/CH/LDL/091022-like virus from a 4/91-like strain. This recombination event took place at the 3' end of the N gene and the 3' untranslated region may account for differences in replication efficiency in tissues of chickens inoculated by the two viruses.
The development of economical de novo gene synthesis methods using microchip-synthesized oligonucleotides has been limited by their high error rates. In this study, a low-cost, effective and improved-throughput (up to 32 oligos per run) error-removal method using an immobilized cellulose column containing the mismatch binding protein MutS was produced to generate high-quality DNA from oligos, particularly microchip-synthesized oligonucleotides. Error-containing DNA in the initial material was specifically retained on the MutS-immobilized cellulose column (MICC), and error-depleted DNA in the eluate was collected for downstream gene assembly. Significantly, this method improved a population of synthetic enhanced green fluorescent protein (720 bp) clones from 0.93% to 83.22%, corresponding to a decrease in the error frequency of synthetic gene from 11.44/kb to 0.46/kb. In addition, a parallel multiplex MICC error-removal strategy was also evaluated in assembling 11 genes encoding ∼21 kb of DNA from 893 oligos. The error frequency was reduced by 21.59-fold (from 14.25/kb to 0.66/kb), resulting in a 24.48-fold increase in the percentage of error-free assembled fragments (from 3.23% to 79.07%). Furthermore, the standard MICC error-removal process could be completed within 1.5 h at a cost as low as $0.374 per MICC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.