Bone marrow mesenchymal stem cells (BMMSCs) have shown promise in repairing injured myocardium. However, few studies have explored the potential of BMMSC transplantation for dilated cardiomyopathy (DCM). In this study we aimed to examine whether BMMSC transplantation improves the cardiac function of dilated cardiomyopathy and investigate the underlying mechanism. We established a DCM model in rabbit, then transplanted BMMSCs induced by 5-azacytidine into the rabbit, and determined the left ventricular pressure and the expression of vascular endothelial growth factor (VEGF) and its receptors. Immunohistochemistry, ultrastructural and reverse transcription polymerase chain reaction (RT-PCR) analysis proved that 5-azacytidine induced the differentiation of BMMSCs into cardiomyocyte-like cells. Upon transplantation of the induced BMMSCs into a DCM model, significantly higher maximum rates of rise and decline (±dp/dt) of left ventricular pressure and left ventricular systolic pressure, as well as much lower left ventricular diastolic pressure, were observed compared with the control group (P < 0.05). After four weeks, deposition of collagen fibers in the myocardium of transplantation group was reduced, accompanied by increased expression of VEGF and its receptors as detected by RT-PCR. Taken together, our results suggest that BMMSC transplantation could alleviate DCM through angiogenesis via the upregulation of VEGF and its receptors.
In order to explore the correlation between targeted contrast-enhanced ultrasound imaging and tumor neovascularization of ovarian cancer xenografts in nude mice, a total of 49 nude mice were selected and randomly divided into 1-week group, 2-week group, 3-week group, 4-week group, 5-week group, 6-week group, and 7-week group according to their ovarian cancer xenografts’ growth time, with 7 ovarian cancer xenografts in each group. After preparing antibody-carrying targeted contrast agent, each group of xenografts performed normal and targeted contrast ultrasound examinations to obtain peak intensity, time to peak, and other imaging parameters; then, those ovarian cancer xenografts were sacrificed for pathological analysis: the neovascular density and antibody expression of the cancer xenografts at different stages were observed and counted, and the correlation between targeted contrast-enhanced ultrasound parameters and tumor neovascular densities of the ovarian cancer xenografts was analyzed. The results show that the peak intensities of targeted contrast ultrasound imaging are greater than that of ordinary ultrasound imaging in the 2-, 3-, 4-, and 5-week groups with statistically significant differences ( P < 0.05 ); the time to peak of targeted contrast ultrasound imaging is shorter than that of ordinary ultrasound imaging in the 2-, 3-, 4-, and 5-week groups with statistically significant differences ( P < 0.05 ); there is a positive correlation between the peak intensities of targeted contrast ultrasound imaging and tumor neovascular densities of the ovarian cancer xenografts in the 2-, 3-, and 4-week group (r2 = 0.645, r3 = 0.668, and r4 = 0.693, P < 0.05 ); there is a negative correlation between the time to peak of targeted contrast ultrasound imaging and tumor neovascular densities of the ovarian cancer xenografts in the 2-, 3-, and 4-week groups (r2 = −0.669, r3 = −0.692, and r4 = −0.704, P < 0.05 ). Therefore, the targeted contrast-enhanced ultrasound imaging parameters have a certain correlation with tumor neovascular density of ovarian cancer xenografts in nude mice and this correlation is more significant in the early stage of ovarian cancer; hence, targeted contrast-enhanced ultrasound imaging may provide a new method, new idea, and new basis for the diagnosis of early ovarian cancer.
Objective To evaluate the value of transvaginal two-dimensional contrast-enhanced ultrasonography (2D-CEUS) in the diagnosis of atypical ovarian corpus luteum hematoma (AT-OCLH). Methods A prospective study was performed on 53 consecutive patients with suspected AT-OCLH, and the diagnostic results by transvaginal 2D-CEUS were statistically compared with the gold standard. The gold standard results were confirmed by surgical pathology or long-term follow-up. Results The characteristic perfusion patterns of AT-OCLH in 2D-CEUS showed no contrast agent perfusion within the tumor mass, and the capsule wall showed rapid, annular, high enhancement perfusion; perfusion patterns could be classified into type Ia and type IIa. AT-OCLH can be distinguished from ovarian tumors based on perfusion characteristics and perfusion pattern type, which can be diagnosed based on the significantly stronger cystic wall perfusion intensity, earlier arrival time, and thicker cystic wall than nonluteal cystic foci (P<0.05). The sensitivity of 2D-CEUS for diagnosing AT-OCLH was 95.7%, with a specificity of 96.6%. A 2D-CEUS scoring system for AT-OCLH was established. Lesions with scores >17.5 were diagnosed as AT-OCLH. Conclusion 2D-CEUS is an effective method for diagnosing AT-OCLH.
Nanoparticles (NPs) with different shape, size, architecture and composition were studied for their application as photo-thermal agents in the area of cancer nanomedicine. Out of them, gold nanoparticles (Au NPs) depending on their in vivo biocompatibility provide a simple thermal ablation platform. However, fabrication of these Au NPs showing appropriate properties for photo-thermal function requires complex routes utilizing hazardous chemicals as capping agents which may cause in vivo concerns. In this study, the fabricated Au NPs utilizing biosynthetic approach having near-infrared (NIR) absorbance assisting photo-thermal treatment could be a possible alternative. Herein, anisotropic Au NPs were fabricated utilizing an aqueous extract of Ceratonia siliqua (carob) which acts as both stabilizing and reducing agent. The biosynthesized Au NPs were exposed to density-gradient centrifugation for the optimization of NIR absorption in 800 to 1000 nm wavelength range. Colloidal Au NPs showed outstanding contrast enrichment for ultrasound imaging, and also Au nanoplates were obtained by density gradient centrifugation can function as a NIR absorbing agent for efficient photothermal killing of Hep-G2 liver tumor cells in vitro with negligible cytotoxicity to active cells. Furthermore, the present approach recommends an innovative way for treating theranostic cancer.
Clarifying the genetic structure can facilitate the understanding of a species evolution history. It is crucial for the management of germplasm resources and providing useful guidance for effective selective breeding. Bellamya is an economically and ecologically important freshwater snail for fish, birds and even humans. Population genetic structures of the Bellamya species, however, were unknown in previous studies. Population genomics approaches with tens to hundreds of thousands of single nucleotide polymorphisms (SNPs) make it possible to detect previously unidentified structures. The population genomic study of seven populations of B. aeruginosa across three river systems (Yellow River, Yangtze River and Pearl River) in China was conducted by SLAF-seq. SLAF-seq obtained a total of 4737 polymorphisms SLAF-tags and 25,999 high-consistency genome-wide SNPs. The population genetic structure showed a clear division among populations from the Yellow River basin (YH and WL) and the Pearl River basin (QSH and LB), as well as population YC from the Yangtze River basin using the SNPs data. However, there existed no distinct population structure using the mitochondrial DNA (mtDNA). The anthropogenic translocation from the Yangtze River basin to the Pearl River basin and the passive dispersion from the Yangtze River basin to the Yellow River basin by flooding have weakened the phylogeographic pattern of B. aeruginosa. The divergence of B. aeruginosa in the three river systems suggests that the anthropogenic dispersal for aquaculture and breeding requires serious consideration of the population structure for the preservation of genetic diversity and effective utilization of germplasm resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.