Attention-based models have shown to be effective in learning representations for sentence classification. They are typically equipped with multi-hop attention mechanism. However, existing multi-hop models still suffer from the problem of paying much attention to the most frequently noticed words, which might not be important to classify the current sentence. And there is a lack of explicitly effective way that helps the attention to be shifted out of a wrong part in the sentence. In this paper, we alleviate this problem by proposing a differentiated attentive learning model. It is composed of two branches of attention subnets and an example discriminator. An explicit signal with the loss information of the first attention subnet is passed on to the second one to drive them to learn different attentive preference. The example discriminator then selects the suitable attention subnet for sentence classification. Experimental results on real and synthetic datasets demonstrate the effectiveness of our model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.